Advertisement

Circulating trophoblastic cells provide genetic diagnosis in 63 fetuses at risk for cystic fibrosis or spinal muscular atrophy

Published:September 03, 2012DOI:https://doi.org/10.1016/j.rbmo.2012.08.002

      Abstract

      This study sought to determine whether a reliable non-invasive prenatal diagnosis (NI-PND) of cystic fibrosis (CF) or spinal muscular atrophy (SMA) can be achieved through analysis of circulating fetal trophoblastic cells (CFTC). The kinetics of CFTC circulation were also studied. CFTC were isolated by isolation by size of epithelial tumour/trophoblastic cells at 9–11 weeks of gestation, before chorionic villus sampling (CVS), from the blood of 63 pregnant women at 25% risk for having a child affected by either CF (n = 32) or SMA (n = 31). Collected cells were laser-microdissected, short tandem repeat-genotyped to determine fetal origin and blindly assessed for mutation analysis. CFTC were independently analysed weekly (4–12 weeks of gestation) in 14 women who achieved pregnancy following IVF. Diagnostic results were compared with those obtained by CVS. All seven CF and seven SMA pregnancies carrying an affected fetus were correctly identified as well as non-affected pregnancies. CFTC provided 100% diagnostic sensitivity (95% CI 76.8–100%) and specificity (95% CI 92.7–100%) in these 63 consecutive pregnancies at risk for CF or SMA. CFTC were found to circulate from 5 weeks of gestation and can be used to develop an early and reliable approach for NI-PND.
      We sought to determine whether a reliable non-invasive prenatal diagnosis (NI-PND) of two rare genetic diseases – cystic fibrosis (CF) and spinal muscular atrophy (SMA) – can be achieved through analysis of circulating fetal trophoblastic cells (CFTC) in blood of pregnant women. We also studied the time of appearance and circulation of CFTC in maternal blood. CFTC were isolated from maternal blood by isolation by size of epithelial tumour/trophoblastic cells (ISET; an approach for cell isolation from blood) at 9–11 weeks of gestation before chorionic villus sampling (CVS) from the blood of 63 pregnant women at 25% risk for having a child affected by either CF (n = 32) or SMA (n = 31). Collected cells were analysed by genetic test to determine fetal origin and blindly assessed for mutation analysis. We independently analysed CFTC in maternal blood samples taken weekly (4–12 weeks of gestation) from 14 women who achieved pregnancy following IVF. Diagnostic results were compared with those obtained by CVS. All seven CF and seven SMA pregnancies carrying an affected fetus were correctly identified as well as non-affected pregnancies. CFTC provided 100% diagnostic sensitivity and specificity in these 63 consecutive pregnancies at risk for CF or SMA. CFTC were found to circulate from 5 weeks of gestation and can be used to develop an early and reliable approach for NI-PND.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ariga H.
        • Ohto H.
        • Busch M.P.
        • Imamura S.
        • Watson R.
        • Reed W.
        • Lee T.H.
        Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis.
        Transfusion. 2001; 41: 1524-1530
        • Beroud C.
        • Karliova M.
        • Bonnefont J.P.
        • Benachi A.
        • Munnich A.
        • Dumez Y.
        • Lacour B.
        • Paterlini-Brechot P.
        Prenatal diagnosis of spinal muscular atrophy by genetic analysis of circulating fetal cells.
        Lancet. 2003; 361: 1013-1014
        • Bianchi D.W.
        Current knowledge about fetal blood cells in the maternal circulation.
        J. Perinat. Med. 1998; 26: 175-185
        • Bianchi D.W.
        • Flint A.F.
        • Pizzimenti M.F.
        • Knoll J.H.
        • Latt S.A.
        Isolation of fetal DNA from nucleated erythrocytes in maternal blood.
        Proc. Natl. Acad. Sci. USA. 1990; 87: 3279-3283
        • Bianchi D.W.
        • Zickwolf G.K.
        • Weil G.J.
        • Sylvester S.
        • DeMaria M.A.
        Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum.
        Proc. Natl. Acad. Sci. USA. 1996; 93: 705-708
        • Bianchi D.W.
        • Simpson J.L.
        • Jackson L.G.
        • Elias S.
        • Holzgreve W.
        • Evans M.I.
        • Dukes K.A.
        • Sullivan L.M.
        • Klinger K.W.
        • Bischoff F.Z.
        • Hahn S.
        • Johnson K.L.
        • Lewis D.
        • Wapner R.J.
        • de la Cruz F.
        Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study.
        Prenat. Diagn. 2002; 22: 609-615
        • Bianchi D.W.
        • Platt L.D.
        • Goldberg J.D.
        • Abuhamad A.Z.
        • Sehnert A.J.
        • Rava R.P.
        Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing.
        Obstet. Gynecol. 2012; 119: 890-901
        • Bischoff F.Z.
        • Sinacori M.K.
        • Dang D.D.
        • Marquez-Do D.
        • Horne C.
        • Lewis D.E.
        • Simpson J.L.
        Cell-free fetal DNA and intact fetal cells in maternal blood circulation: implications for first and second trimester non-invasive prenatal diagnosis.
        Hum. Reprod. Update. 2002; 8: 493-500
        • Brown
        • Cai T.
        • DasGupta A.
        Interval estimation for a binomial proportion.
        Stat. Sci. 2001; 16: 101-133
        • Chen E.Z.
        • Chiu R.W.
        • Sun H.
        • Akolekar R.
        • Chan K.C.
        • Leung T.Y.
        • Jiang P.
        • Zheng Y.W.
        • Lun F.M.
        • Chan L.Y.
        • Jin Y.
        • Go A.T.
        • Lau E.T.
        • To W.W.
        • Leung W.C.
        • Tang R.Y.
        • Au-Yeung S.K.
        • Lam H.
        • Kung Y.Y.
        • Zhang X.
        • van Vugt J.M.
        • Minekawa R.
        • Tang M.H.
        • Wang J.
        • Oudejans C.B.
        • Lau T.K.
        • Nicolaides K.H.
        • Lo Y.M.
        Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing.
        PLoS One. 2011; 6: e21791
        • Chiu R.W.
        • Chan K.C.
        • Gao Y.
        • Lau V.Y.
        • Zheng W.
        • Leung T.Y.
        • Foo C.H.
        • Xie B.
        • Tsui N.B.
        • Lun F.M.
        • Zee B.C.
        • Lau T.K.
        • Cantor C.R.
        • Lo Y.M.
        Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma.
        Proc. Natl. Acad. Sci. USA. 2008; 105: 20458-20463
        • Chiu R.W.
        • Akolekar R.
        • Zheng Y.W.
        • Leung T.Y.
        • Sun H.
        • Chan K.C.
        • Lun F.M.
        • Go A.T.
        • Lau E.T.
        • To W.W.
        • Leung W.C.
        • Tang R.Y.
        • Au-Yeung S.K.
        • Lam H.
        • Kung Y.Y.
        • Zhang X.
        • van Vugt J.M.
        • Minekawa R.
        • Tang M.H.
        • Wang J.
        • Oudejans C.B.
        • Lau T.K.
        • Nicolaides K.H.
        • Lo Y.M.
        Non-invasive prenatal assessment of trisomy 21 by large multiplexed maternal plasma DNA sequencing: large scale validity study.
        BMJ. 2011; 342: c7401
        • Ding C.
        • Chiu R.W.
        • Lau T.K.
        • Leung T.N.
        • Chan L.C.
        • Chan A.Y.
        • Charoenkwan P.
        • Ng I.S.
        • Law H.Y.
        • Ma E.S.
        • Xu X.
        • Wanapirak C.
        • Sanguansermsri T.
        • Liao C.
        • Ai M.A.
        • Chui D.H.
        • Cantor C.R.
        • Lo Y.M.
        MS analysis of single-nucleotide differences in circulating nucleic acids: application to noninvasive prenatal diagnosis.
        Proc. Natl. Acad. Sci. USA. 2004; 101: 10762-10767
        • Ehrich M.
        • Deciu C.
        • Zwiefelhofer T.
        • Tynan J.A.
        • Cagasan L.
        • Tim R.
        • Lu V.
        • McCullough R.
        • McCarthy E.
        • Nygren A.O.
        • Dean J.
        • Tang L.
        • Hutchison D.
        • Lu T.
        • Wang H.
        • Angkachatchai V.
        • Oeth P.
        • Cantor C.R.
        • Bombard A.
        • van den Boom D.
        Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting.
        Am. J. Obstet. Gynecol. 2011; 204: e1-e11
        • Fan H.C.
        • Blumenfeld Y.J.
        • Chitkara U.
        • Hudgins L.
        • Quake S.R.
        Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood.
        Proc. Natl. Acad. Sci. USA. 2008; 105: 16266-16271
        • Guetta E.
        • Gutstein-Abo L.
        • Barkai G.
        Trophoblasts isolated from the maternal circulation: in vitro expansion and potential application in non-invasive prenatal diagnosis.
        J. Histochem. Cytochem. 2005; 53: 337-339
        • Herzenberg L.A.
        • Bianchi D.W.
        • Schroder J.
        • Cann H.M.
        • Iverson G.M.
        Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting.
        Proc. Natl. Acad. Sci. USA. 1979; 76: 1453-1455
        • Holzgreve W.
        • Garritsen H.S.
        • Ganshirt-Ahlert D.
        Fetal cells in the maternal circulation.
        J. Reprod. Med. 1992; 37: 410-418
        • Kuk A.
        A litter-based approach to risk assessment in developmental toxicity studies via a power family of completely monotone functions.
        J. Roy. Stat. Soc. C (Appl. Stat.). 2004; 53: 369-386
        • Lim T.H.
        • Tan A.S.
        • Goh V.H.
        Relationship between gestational age and frequency of fetal trophoblasts and nucleated erythrocytes in maternal peripheral blood.
        Prenat. Diagn. 2001; 21: 14-21
        • Lo Y.M.
        • Corbetta N.
        • Chamberlain P.F.
        • Rai V.
        • Sargent I.L.
        • Redman C.W.
        • Wainscoat J.S.
        Presence of fetal DNA in maternal plasma and serum.
        Lancet. 1997; 350: 485-487
        • Lo Y.M.
        • Tein M.S.
        • Lau T.K.
        • Haines C.J.
        • Leung T.N.
        • Poon P.M.
        • Wainscoat J.S.
        • Johnson P.J.
        • Chang A.M.
        • Hjelm N.M.
        Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis.
        Am. J. Hum. Genet. 1998; 62: 768-775
        • Lo Y.M.
        • Lun F.M.
        • Chan K.C.
        • Tsui N.B.
        • Chong K.C.
        • Lau T.K.
        • Leung T.Y.
        • Zee B.C.
        • Cantor C.R.
        • Chiu R.W.
        Digital PCR for the molecular detection of fetal chromosomal aneuploidy.
        Proc. Natl. Acad. Sci. USA. 2007; 104: 13116-13121
        • Lun F.M.
        • Tsui N.B.
        • Chan K.C.
        • Leung T.Y.
        • Lau T.K.
        • Charoenkwan P.
        • Chow K.C.
        • Lo W.Y.
        • Wanapirak C.
        • Sanguansermsri T.
        • Cantor C.R.
        • Chiu R.W.
        • Lo Y.M.
        Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma.
        Proc. Natl. Acad. Sci. USA. 2008; 105: 19920-19925
        • Mujezinovic F.
        • Alfirevic Z.
        Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review.
        Obstet. Gynecol. 2007; 110: 687-694
        • Oudejans C.B.
        • Tjoa M.L.
        • Westerman B.A.
        • Mulders M.A.
        • Van Wijk I.J.
        • Van Vugt J.M.
        Circulating trophoblast in maternal blood.
        Prenat. Diagn. 2003; 23: 111-116
        • Palomaki G.E.
        • Deciu C.
        • Kloza E.M.
        • Lambert-Messerlian G.M.
        • Haddow J.E.
        • Neveux L.M.
        • Ehrich M.
        • van den Boom D.
        • Bombard A.T.
        • Grody W.W.
        • Nelson S.F.
        • Canick J.A.
        DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: and international collaborative study.
        Genet. Med. 2012; 14: 296-305
        • Papageorgiou E.A.
        • Karagrigoriou A.
        • Tsaliki E.
        • Velissariou V.
        • Carter N.P.
        • Patsalis P.C.
        Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21.
        Nat. Med. 2011; 17: 512
        • Piyamongkol W.
        • Bermudez M.G.
        • Harper J.C.
        • Wells D.
        Detailed investigation of factors influencing amplification efficiency and allele drop-out in single cell PCR: implications for preimplantation genetic diagnosis.
        Mol. Hum. Reprod. 2003; 9: 411-420
        • Sackett D.L.
        • Haynes R.B.
        The architecture of diagnostic research.
        BMJ. 2002; 324: 539-541
        • Saker A.
        • Benachi A.
        • Bonnefont J.P.
        • Munnich A.
        • Dumez Y.
        • Lacour B.
        • Paterlini-Brechot P.
        Genetic characterisation of circulating fetal cells allows non-invasive prenatal diagnosis of cystic fibrosis.
        Prenat. Diagn. 2006; 26: 906-916
        • Schmorl G.
        Pathologisch-anatomische Untersuchungen ueber Publereklampsie.
        Vogel, Leipzig1893
        • Shulman L.P.
        • Phillips O.P.
        • Tolley E.
        • Sammons D.
        • Wachtel S.S.
        Frequency of nucleated red blood cells in maternal blood during the different gestational ages.
        Hum. Genet. 1998; 103: 723-726
        • Simpson J.L.
        • Elias S.
        Isolating fetal cells from maternal blood. Advances in prenatal diagnosis through molecular technology.
        JAMA. 1993; 270: 2357-2361
        • Sparks A.B.
        • Wang E.T.
        • Struble C.A.
        • Barrett W.
        • Stokowski R.
        • McBride C.
        • Zahn J.
        • Lee K.
        • Shen N.
        • Doshi J.
        • Sun M.
        • Garrison J.
        • Sandler J.
        • Hollemon D.
        • Pattee P.
        • Tomita-Mitchell A.
        • Mitchell M.
        • Stuelpnagel J.
        • Song K.
        • Oliphant A.
        Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy.
        Prenat. Diagn. 2012; 32: 3-9
        • Tjoa M.L.
        • Delli-Bovi L.
        • Johnson K.L.
        • Bianchi D.W.
        Antibodies to trophoblast antigens HLA-G, placenta growth factor, and neuroD2 do not improve detection of circulating trophoblast cells in maternal blood.
        Fetal Diagn. Ther. 2007; 22: 85-89
        • Tsui N.B.
        • Kadir R.A.
        • Chan K.C.
        • Chi C.
        • Mellars G.
        • Tuddenham E.G.
        • Leung T.Y.
        • Lau T.K.
        • Chiu R.W.
        • Lo Y.M.
        Noninvasive prenatal diagnosis by microfluidics digital PCR analysis of maternal plasma DNA.
        Blood. 2011; 117: 3684
        • Vona G.
        • Beroud C.
        • Benachi A.
        • Quenette A.
        • Bonnefont J.P.
        • Romana S.
        • Dumez Y.
        • Lacour B.
        • Paterlini-Brechot P.
        Enrichment, immunomorphological, and genetic characterization of fetal cells circulating in maternal blood.
        Am. J. Pathol. 2002; 160: 51-58
        • Walknowska J.
        • Conte F.A.
        • Grumbach M.M.
        Practical and theoretical implications of fetal-maternal lymphocyte transfer.
        Lancet. 1969; 1: 1119-1122
        • Wright C.F.
        • Chitty L.S.
        Cell-free fetal DNA and RNA in maternal blood: implications for safer antenatal testing.
        BMJ. 2009; 339: b2451
        • Zeger S.L.
        • Liang K.Y.
        Longitudinal data analysis for discrete and continuous outcomes.
        Biometrics. 1986; 42: 121-130
        • Zhang L.
        • Cui X.
        • Schmitt K.
        • Hubert R.
        • Navidi W.
        • Arnheim N.
        Whole genome amplification from a single cell: implications for genetic analysis.
        Proc. Natl. Acad. Sci. USA. 1992; 89: 5847-5851