Advertisement

Potential role of green tea catechins in the management of oxidative stress-associated infertility

Published:February 28, 2017DOI:https://doi.org/10.1016/j.rbmo.2017.02.006

      Highlights

      • Green tea components particularly epigallocatechin-3-gallate possess outstanding antioxidant activity.
      • The beneficial effects of green tea components on gamete quality in vitro makes green tea an appealing option in counteracting oxidative stress in human reproduction and infertility.
      • Oral supplement with green tea extract seems rational for infertile couples, particularly those who are diagnosed with idiopathic infertility, because it lacks significant side effects.
      • The in vivo use of green tea components await confirmation of the positive effects by research.

      Abstract

      Reactive oxygen species (ROS) are present in low concentrations in the genital tracts of males and females. Excessive ROS lead to oxidative stress, which damages DNA, lipids and proteins. Such molecular changes result in compromised vitality, increased morphological defects and decreased sperm motility in the male. In the female, oxidative stress interferes with oocyte maturation, and may inhibit in-vitro maturation of the oocyte. Recently, green tea supplementation has been reported to possess properties that may improve the quality of male and female gametes largely due to the ability of catechin polyphenols to quench ROS. Epigallocatechin-3-gallate (EGCG) is considered the most promising bioactive compound in green tea due to its strong antioxidant activity. The unique property of green tea catechins may potentially improve reproductive health and pose an important research area. We present a comprehensive overview on the effects and potential roles of green tea catechins on oxidative stress in male and female reproduction and fertility. In this review, possible mechanisms of action are highlighted to better understand the potential use of green tea catechins in the reduction of oxidative stress and its associated beneficial effects in the clinical setting.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Abshenas J.
        • Babaei H.
        • Zare M.-H.
        • Allahbakhshi A.
        • Sharififar F.
        The effects of green tea (Camellia sinensis) extract on mouse semen quality after scrotal heat stress.
        Vet. Res. Forum. 2012; : 242-247
        • Agarwal A.
        • Said T.M.
        Carnitines and male infertility.
        Reprod. Biomed. Online. 2004; 8: 376-384
        • Agarwal A.
        • Allamaneni S.S.
        • Nallella K.P.
        • George A.T.
        • Mascha E.
        Correlation of reactive oxygen species levels with the fertilization rate after in vitro fertilization: a qualified meta-analysis.
        Fertil. Steril. 2005; 84: 228-231
        • Agarwal A.
        • Gupta S.
        • Abdel-Razek H.
        • Krajcir N.
        • Athayde K.
        Impact of oxidative stress on gametes and embryos in an ART laboratory.
        Clin. Embryol. 2006; 9: 5-22
        • Agarwal A.
        • Said T.M.
        • Bedaiwy M.A.
        • Banerjee J.
        • Alvarez J.G.
        Oxidative stress in an assisted reproductive techniques setting.
        Fertil. Steril. 2006; 86: 503-512
        • Agarwal A.
        • Gupta S.
        • Sekhon L.
        • Shah R.
        Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications.
        Antioxid. Redox Signal. 2008; 10: 1375-1404
        • Aitken R.J.
        • Paterson M.
        • Fisher H.
        • Buckingham D.W.
        • Van Duin M.
        Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function.
        J. Cell Sci. 1995; 108: 2017-2025
        • Askoxylaki M.
        • Siristatidis C.
        • Chrelias C.
        • Vogiatzi P.
        • Creatsa M.
        • Salamalekis G.
        • Vrantza T.
        • Vrachnis N.
        • Kassanos D.
        Reactive oxygen species in the follicular fluid of subfertile women undergoing in vitro fertilization: a short narrative review.
        J. Endocrinol. Invest. 2013; 36: 1117-1120
        • Awoniyi D.O.
        • Aboua Y.G.
        • Marnewick J.
        • Brooks N.
        The effects of Rooibos (Aspalathus linearis), Green tea (Camellia sinensis) and commercial Rooibos and Green tea supplements on epididymal sperm in oxidative stress-induced rats.
        Phytother. Res. 2012; 26: 1231-1239
        • Azam S.
        • Hadi N.
        • Khan N.U.
        • Hadi S.M.
        Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties.
        Toxicol. In Vitro. 2004; 18: 555-561
        • Aziz N.
        • Saleh R.A.
        • Sharma R.K.
        • Lewis-Jones I.
        • Esfandiari N.
        • Thomas Jr., A.J.
        • Agarwal A.
        Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index.
        Fertil. Steril. 2004; 81: 349-354
        • Balentine D.A.
        • Wiseman S.A.
        • Bouwens L.C.
        The chemistry of tea flavonoids.
        Crit. Rev. Food Sci. Nutr. 1997; 37: 693-704
        • Bansal A.K.
        • Bilaspuri G.S.
        Impacts of oxidative stress and antioxidants on semen functions.
        Vet. Med. Int. 2010; 2010https://doi.org/10.4061/2011/686137
        • Barakat I.A.
        • Al-Himaidi A.R.
        • Rady A.M.
        Antioxidant effect of green tea leaves extract on in vitro production of sheep embryos.
        Pak. J. Zool. 2014; 46: 167-175
        • Basu A.
        • Lucas E.A.
        Mechanisms and effects of green tea on cardiovascular health.
        Nutr. Rev. 2007; 65: 361-375
        • Beecher G.R.
        • Warden B.A.
        • Merken H.
        Analysis of tea polyphenols.
        Exp. Biol. Med. 1999; 220: 267-270
        • Behrman H.R.
        • Kodaman P.H.
        • Preston S.L.
        • Gao S.
        Oxidative stress and the ovary.
        J. Soc. Gynecol. Investig. 2001; 8: S40-S42
        • Blondin P.
        • Guilbault L.A.
        • Sirard M.A.
        The time interval between FSH-P administration and slaughter can influence the developmental competence of beef heifer oocytes.
        Theriogenology. 1997; 48: 803-813
        • Bokuchava M.A.
        • Skobeleva N.I.
        The biochemistry and technology of tea manufacture.
        Crit. Rev. Food Sci. Nutr. 1980; 12: 303-370
        • Bose M.
        • Hao X.
        • Ju J.
        • Husain A.
        • Park S.
        • Lambert J.D.
        • Yang C.S.
        Inhibition of tumorigenesis in Apc Min/+ mice by a combination of (–)-epigallocatechin-3-gallate and fish oil.
        J. Agric. Food Chem. 2007; 55: 7695-7700
        • Cabrera C.
        • Giménez R.
        • López M.C.
        Determination of tea components with antioxidant activity.
        J. Agric. Food Chem. 2003; 51: 4427-4435
        • Cabrera C.
        • Artacho R.
        • Gimenez R.
        Beneficial effects of green tea–a review.
        J. Am. Coll. Nutr. 2006; 25: 79-99
        • Camlin N.J.
        • Sobinoff A.P.
        • Sutherland J.M.
        • Beckett E.L.
        • Jarnicki A.G.
        • Vanders R.L.
        • Hansbro P.M.
        • Mclaughlin E.A.
        • Holt J.E.
        Maternal smoke exposure impairs the long-term fertility of female offspring in a murine model.
        Biol. Reprod. 2016; 94: 39
        • Cao H.
        • Hininger-Favier I.
        • Kelly M.A.
        • Benaraba R.
        • Dawson H.D.
        • Coves S.
        • Roussel A.M.
        • Anderson R.A.
        Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet.
        J. Agric. Food Chem. 2007; 55: 6372-6378
        • Cengiz H.
        • Dagdeviren H.
        • Kanawati A.
        • Suzen Çaypinar S.
        • Yesil A.
        • Ekin M.
        • Yasar L.
        Ischemia-modified albumin as an oxidative stress biomarker in early pregnancy loss.
        J. Matern. Fetal. Neonatal. Med. 2016; 29: 1754-1757
        • Chandra A.K.
        • Choudhury S.R.
        • De N.
        • Sarkar M.
        Effect of green tea (Camellia sinensis L.) extract on morphological and functional changes in adult male gonads of albino rats.
        Indian J. Exp. Biol. 2011; 49: 689-697
        • Chen D.
        Green Tea Polyphenols Prevent Parkinson's Disease: In Vitro and In Vivo Studies. Graduate Theses Dissertation.
        Iowa State University, 2013: 1-136
        • Chen S.
        • Osaki N.
        • Shimotoyodome A.
        Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes.
        Biochem. Biophys. Res. Commun. 2015; 461: 1-7
        • Chow H.H.
        • Cai Y.
        • Hakim I.A.
        • Crowell J.A.
        • Shahi F.
        • Brooks C.A.
        • Dorr R.T.
        • Hara Y.
        • Alberts D.S.
        Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals.
        Clin. Cancer Res. 2003; 9: 3312-3319
        • Chow H.H.
        • Hakim I.A.
        • Vining D.R.
        • Crowell J.A.
        • Cordova C.A.
        • Chew W.M.
        • Xu M.J.
        • Hsu C.H.
        • Ranger-Moore J.
        • Alberts D.S.
        Effects of repeated green tea catechin administration on human cytochrome P450 activity.
        Cancer Epidemiol. Biomarkers Prev. 2006; 15: 2473-2476
        • Cia D.
        • Jacquemot N.
        • Vergnaud J.
        • Doly M.
        Protective effects of epigallocatechin gallate (EGCG) against oxidative stress in cultured retinal pigment epithelial cells.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 4437
        • Cocuzza L.
        • Sikka S.C.
        • Athayde K.S.
        • Agarwal A.
        Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis.
        Int. Braz. J. Urol. 2007; 33: 603-621
        • Coimbra S.
        • Castro E.
        • Rocha-Pereira P.
        • Rebelo I.
        • Rocha S.
        • Santos-Silva A.
        The effect of green tea in oxidative stress.
        Clin. Nutr. 2006; 25: 790-796
        • de Castro L.S.
        • De Assis P.M.
        • Siqueira A.F.
        • Hamilton T.R.
        • Mendes C.M.
        • Losano J.D.
        • Nichi M.
        • Visintin J.A.
        • Assumpcao M.E.
        Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation.
        Oxid. Med. Cell. Longev. 2016; 2016: 8213071
        • de Lamirande E.
        • Gagnon C.
        Human sperm hyperactivation and capacitation as parts of an oxidative process.
        Free Radic. Biol. Med. 1993; 14: 157-166
        • Dada R.
        • Mahfouz R.Z.
        • Kumar R.
        • Venkatesh S.
        • Shamsi M.B.
        • Agarwal A.
        • Talwar P.
        • Sharma R.K.
        A comprehensive work up for an asthenozoospermic man with repeated intracytoplasmic sperm injection (ICSI) failure.
        Andrologia. 2011; 43: 368-372
        • Daglar K.
        • Biberoglu E.
        • Kirbas A.
        • Dirican A.O.
        • Genc M.
        • Avci A.
        • Biberoglu K.
        The cellular immunity and oxidative stress markers in early pregnancy loss.
        J. Matern. Fetal. Neonatal. Med. 2016; 29: 1840-1843
        • Das S.K.
        • Karmakar S.N.
        Effect of green tea (Camelia sinensis L.) leaf extract on reproductive system of adult male albino rats.
        Int. J. Physiol. Pathophysiol. Pharmacol. 2015; 7: 178-184
        • De Amicis F.
        • Santoro M.
        • Guido C.
        • Russo A.
        • Aquila S.
        Epigallocatechin gallate affects survival and metabolism of human sperm.
        Mol. Nutr. Food Res. 2012; 56: 1655-1664
        • Del Rio D.
        • Calani L.
        • Cordero C.
        • Salvatore S.
        • Pellegrini N.
        • Brighenti F.
        Bioavailability and catabolism of green tea flavan-3-ols in humans.
        Nutrition. 2010; 26: 1110-1116
        • Ding J.
        • Wang H.
        • Wu Z.-B.
        • Zhao J.
        • Zhang S.
        • Li W.
        Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol.
        Biol. Reprod. 2015; 114: 122333
        • Elbling L.
        • Weiss R.-M.
        • Teufelhofer O.
        • Uhl M.
        • Knasmueller S.
        • Schulte-Hermann R.
        • Berger W.
        • Micksche M.
        Green tea extract and (–)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities.
        FASEB J. 2005; 19: 807-809
        • Esfandiari N.
        • Falcone T.
        • Agarwal A.
        • Attaran M.
        • Nelson D.R.
        • Sharma R.K.
        Protein supplementation and the incidence of apoptosis and oxidative stress in mouse embryos.
        Obstet. Gynecol. 2005; 105: 653-660
        • Fang M.Z.
        • Wang Y.
        • Ai N.
        • Hou Z.
        • Sun Y.
        • Lu H.
        • Welsh W.
        • Yang C.S.
        Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines.
        Cancer Res. 2003; 63: 7563-7570
        • Fraga C.G.
        • Oteiza P.I.
        Dietary flavonoids: role of (−)-epicatechin and related procyanidins in cell signaling.
        Free Radic. Biol. Med. 2011; 51: 813-823
        • Gale I.
        • Gil L.
        • Malo C.
        • González N.
        • Martínez F.
        Effect of Camellia sinensis supplementation and increasing holding time on quality of cryopreserved boar semen.
        Andrologia. 2015; 47: 505-512
        • Galleano M.
        • Verstraeten S.V.
        • Oteiza P.I.
        • Fraga C.G.
        Antioxidant actions of flavonoids: thermodynamic and kinetic analysis.
        Arch. Biochem. Biophys. 2010; 501: 23-30
        • Garcia-Cortes M.
        • Robles-Diaz M.
        • Ortega-Alonso A.
        • Medina-Caliz I.
        • Andrade R.J.
        Hepatotoxicity by dietary supplements: a tabular listing and clinical characteristics.
        Int. J. Mol. Sci. 2016; 17 (pii: E537)
        • González-Fernández R.
        • Hernandez J.
        • Martin-Vasallo P.
        • Puopolo M.
        • Palumbo A.
        • Avila J.
        Expression levels of the oxidative stress response gene ALDH3A2 in granulosa-lutein cells are related to female age and infertility diagnosis.
        Reprod. Sci. 2016; 23: 604-609
        • Graham H.N.
        Green tea composition, consumption, and polyphenol chemistry.
        Prev. Med. 1992; 21: 334-350
        • Guerin P.
        • El Mouatassim S.
        • Menezo Y.
        Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings.
        Hum. Reprod. Update. 2001; 7: 175-189
        • Gupta J.
        • Siddique Y.
        • Beg T.
        • Ara G.
        • Afzal M.
        A review on the beneficial effects of tea polyphenols on human health.
        Int. J. Pharmacol. 2008; 4: 314-338
        • Guthrie H.D.
        • Welch G.R.
        Effects of reactive oxygen species on sperm function.
        Theriogenology. 2012; 78: 1700-1708
        • Hampl R.
        • Drábková P.
        • Kand'ár R.
        • Stěpán J.
        [Impact of oxidative stress on male infertility].
        Ceska Gynekol. 2012; 77: 241-245
        • Hara Y.
        Physiological functions of tea polyphenols: part 2.
        Am. Biotechnol. Lab. 1994; 12: 18
        • Harvey A.J.
        • Kind K.L.
        • Thompson J.G.
        REDOX regulation of early embryo development.
        Reproduction. 2002; 123: 479-486
        • Henning S.M.
        • Fajardo-Lira C.
        • Lee H.W.
        • Youssefian A.A.
        • Go V.L.W.
        • Heber D.
        Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity.
        Nutr. Cancer. 2003; 45: 226-235
        • Henning S.M.
        • Niu Y.
        • Liu Y.
        • Lee N.H.
        • Hara Y.
        • Thames G.D.
        • Minutti R.R.
        • Carpenter C.L.
        • Wang H.
        • Heber D.
        Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals.
        J. Nutr. Biochem. 2005; 16: 610-616
        • Hijazi M.M.
        • Khatoon N.
        • Azmi M.A.
        • Rajput M.T.
        • Zaidi S.I.
        • Azmi M.A.
        • Perveen R.
        • Naqvi S.N.
        • Rashid M.
        Report: effects of Camellia sinensis L. (green tea) extract on the body and testicular weight changes in adult Wistar rate.
        Pak. J. Pharm. Sci. 2015; 28: 249-253
        • Hong J.
        • Lambert J.D.
        • Lee S.H.
        • Sinko P.J.
        • Yang C.S.
        Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites.
        Biochem. Biophys. Res. Commun. 2003; 310: 222-227
        • Hyung S.-J.
        • Detoma A.S.
        • Brender J.R.
        • Lee S.
        • Vivekanandan S.
        • Kochi A.
        • Choi J.-S.
        • Ramamoorthy A.
        • Ruotolo B.T.
        • Lim M.H.
        Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species.
        Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 3743-3748
        • Isbrucker R.A.
        • Edwards J.A.
        • Wolz E.
        • Davidovich A.
        • Bausch J.
        Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: teratogenicity and reproductive toxicity studies in rats.
        Food Chem. Toxicol. 2006; 44: 651-661
        • Isozaki T.
        • Tamura H.
        Epigallocatechin gallate (EGCG) inhibits the sulfation of 1-naphthol in a human colon carcinoma cell line, Caco-2.
        Biol. Pharm. Bull. 2001; 24: 1076-1078
        • Jaganathan S.K.
        • Mandal M.
        Involvement of non-protein thiols, mitochondrial dysfunction, reactive oxygen species and p53 in honey-induced apoptosis.
        Invest. New Drugs. 2010; 28: 624-633
        • Jana S.K.
        • Babu N.
        • Chattopadhyay R.
        • Chakravarty B.
        • Chaudhury K.
        Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable.
        Reprod. Toxicol. 2010; 29: 447-451
        • Jung H.A.
        • Jung M.J.
        • Kim J.Y.
        • Chung H.Y.
        • Choi J.S.
        Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation.
        Arch. Pharm. Res. 2003; 26: 809-815
        • Katiyar S.K.
        • Raman C.
        Green tea: a new option for the prevention or control of osteoarthritis.
        Arthritis Res. Ther. 2011; 13: 121
        • Kim H.S.
        • Kim M.H.
        • Jeong M.
        • Hwang Y.S.
        • Lim S.H.
        • Shin B.A.
        • Ahn B.W.
        • Jung Y.D.
        EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells.
        Anticancer Res. 2004; 24: 747-754
        • Kim H.S.
        • Quon M.J.
        • Kim J.A.
        New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate.
        Redox Biol. 2014; 2: 187-195
        • Kim J.-A.
        Mechanisms underlying beneficial health effects of tea catechins to improve insulin resistance and endothelial dysfunction.
        Endocr. Metab. Immune Disord. Drug Targets. 2008; 8: 82-88
        • Kim J.E.
        • Shin M.H.
        • Chung J.H.
        Epigallocatechin-3-gallate prevents heat shock-induced MMP-1 expression by inhibiting AP-1 activity in human dermal fibroblasts.
        Arch. Dermatol. Res. 2013; 305: 595-602
        • Konishi Y.
        • Kobayashi S.
        • Shimizu M.
        Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers.
        J. Agric. Food Chem. 2003; 51: 7296-7302
        • Kothari S.
        • Thompson A.
        • Agarwal A.
        • Du Plessis S.S.
        Free radicals: their beneficial and detrimental effects on sperm function.
        Indian J. Exp. Biol. 2010; 48: 425-435
        • Kwiecien S.
        • Jasnos K.
        • Magierowski M.
        • Sliwowski Z.
        • Pajdo R.
        • Brzozowski B.
        • Mach T.
        • Wojcik D.
        • Brzozowski T.
        Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress-induced gastric injury.
        J. Physiol. Pharmacol. 2014; 65: 613-622
        • Lackner J.E.
        • Agarwal A.
        • Mahfouz R.
        • Du Plessis S.S.
        • Schatzl G.
        The association between leukocytes and sperm quality is concentration dependent.
        Reprod. Biol. Endocrinol. 2010; 8: 12
        • Laschke M.W.
        • Schwender C.
        • Scheuer C.
        • Vollmar B.
        • Menger M.D.
        Epigallocatechin-3-gallate inhibits estrogen-induced activation of endometrial cells in vitro and causes regression of endometriotic lesions in vivo.
        Hum. Reprod. 2008; 23: 2308-2318
        • Li M.J.
        • Yin Y.C.
        • Wang J.
        • Jiang Y.F.
        Green tea compounds in breast cancer prevention and treatment.
        World J. Clin. Oncol. 2014; 5: 520-528
        • Li Y.
        • Zhang C.
        • Gao Y.
        • Zhang Y.
        • Sui L.
        • Zhang X.
        • Zhang Y.
        Effect of epigallocatechin-3-gallate on the in vitro developmental potential of porcine oocytes and embryos obtained parthenogenetically and by somatic cell nuclear transfer.
        Ital. J. Anim. Sci. 2014; 13
        • Lombardo F.
        • Fiducia M.
        • Lunghi R.
        • Marchetti L.
        • Palumbo A.
        • Rizzo F.
        • Koverech A.
        • Lenzi A.
        • Gandini L.
        Effects of a dietary supplement on chronic pelvic pain syndrome (Category IIIA), leucocytospermia and semen parameters.
        Andrologia. 2012; 44: 672-678
        • Luderer U.
        Ovarian toxicity from reactive oxygen species.
        Vitam. Horm. 2014; 94: 99-127
        • Mahfouz R.
        • Sharma R.
        • Thiyagarajan A.
        • Kale V.
        • Gupta S.
        • Sabanegh E.
        • Agarwal A.
        Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species.
        Fertil. Steril. 2010; 94: 2141-2146
        • Mandel S.A.
        • Amit T.
        • Kalfon L.
        • Reznichenko L.
        • Weinreb O.
        • Youdim M.B.
        Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG).
        J. Alzheimers Dis. 2008; 15: 211-222
        • Manohar M.
        • Fatima I.
        • Saxena R.
        • Chandra V.
        • Sankhwar P.L.
        • Dwivedi A.
        (−)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation.
        J. Nutr. Biochem. 2013; 24: 940-947
        • Matsuzaki S.
        • Darcha C.
        Antifibrotic properties of epigallocatechin-3-gallate in endometriosis.
        Hum. Reprod. 2014; 29: 1677-1687
        • Mazzanti G.
        • Di Sotto A.
        • Vitalone A.
        Hepatotoxicity of green tea: an update.
        Arch. Toxicol. 2015; 89: 1175-1191
        • Nakagawa T.
        • Yokozawa T.
        • Sano M.
        • Takeuchi S.
        • Kim M.
        • Minamoto S.
        Activity of (-)-epigallocatechin 3-O-gallate against oxidative stress in rats with adenine-induced renal failure.
        J. Agric. Food Chem. 2004; 52: 2103-2107
        • Naumovski N.
        • Blades B.L.
        • Roach P.D.
        Food inhibits the oral bioavailability of the major green tea antioxidant epigallocatechin gallate in humans.
        Antioxidants (Basel). 2015; 4: 373-393
        • Nguyen M.M.
        • Ahmann F.R.
        • Nagle R.B.
        • Hsu C.H.
        • Tangrea J.A.
        • Parnes H.L.
        • Sokoloff M.H.
        • Gretzer M.B.
        • Chow H.H.
        Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: evaluation of potential chemopreventive activities.
        Cancer Prev. Res. (Phila.). 2012; 5: 290-298
        • Nozaki A.
        • Hori M.
        • Kimura T.
        • Ito H.
        • Hatano T.
        Interaction of polyphenols with proteins: binding of (-)-epigallocatechin gallate to serum albumin, estimated by induced circular dichroism.
        Chem. Pharm. Bull. 2009; 57: 224-228
        • Oliva J.
        • Bardag-Gorce F.
        • Tillman B.
        • French S.W.
        Protective effect of quercetin, EGCG, catechin and betaine against oxidative stress induced by ethanol in vitro.
        Exp. Mol. Pathol. 2011; 90: 295-299
        • Oyawoye O.
        • Abdel Gadir A.
        • Garner A.
        • Constantinovici N.
        • Perrett C.
        • Hardiman P.
        Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome.
        Hum. Reprod. 2003; 18: 2270-2274
        • Pahune P.P.
        • Choudhari A.R.
        • Muley P.A.
        The total antioxidant power of semen and its correlation with the fertility potential of human male subjects.
        J. Clin. Diagn. Res. 2013; 7: 991-995
        • Pan T.
        • Jankovic J.
        • Le W.
        Potential therapeutic properties of green tea polyphenols in Parkinson's disease.
        Drugs Aging. 2003; 20: 711-721
        • Park J.-H.
        • Bae J.-H.
        • Im S.-S.
        • Song D.-K.
        Green tea and type 2 diabetes.
        Integr. Med. Res. 2014; 3: 4-10
        • Pasqualotto F.F.
        • Sharma R.K.
        • Nelson D.R.
        • Thomas A.J.
        • Agarwal A.
        Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation.
        Fertil. Steril. 2000; 73: 459-464
        • Patel S.S.
        • Beer S.
        • Kearney D.L.
        • Phillips G.
        • Carter B.A.
        Green tea extract: a potential cause of acute liver failure.
        World J. Gastroenterol. 2013; 19: 5174-5177
        • Perron N.R.
        • Brumaghim J.L.
        A review of the antioxidant mechanisms of polyphenol compounds related to iron binding.
        Cell Biochem. Biophys. 2009; 53: 75-100
        • Pirker K.F.
        • Baratto M.C.
        • Basosi R.
        • Goodman B.A.
        Influence of pH on the speciation of copper (II) in reactions with the green tea polyphenols, epigallocatechin gallate and gallic acid.
        J. Inorg. Biochem. 2012; 112: 10-16
        • Pisters K.M.W.
        • Newman R.A.
        • Coldman B.
        • Shin D.M.
        • Khuri F.R.
        • Hong W.K.
        • Glisson B.S.
        • Lee J.S.
        Phase I trial of oral green tea extract in adult patients with solid tumors.
        J. Clin. Oncol. 2001; 19: 1830-1838
        • Rahmani A.H.
        • Al. Shabrmi F.M.
        • Allemailem K.S.
        • Aly S.M.
        • Khan M.A.
        Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway.
        Biomed Res. Int. 2015; 2015: 925640
        • Reygaert W.C.
        The antimicrobial possibilities of green tea.
        Front. Microbiol. 2014; 5: 434
        • Ricci A.
        • Olivares C.
        • Bilotas M.
        • Bastón J.
        • Singla J.
        • Meresman G.
        • Barañao R.
        Natural therapies assessment for the treatment of endometriosis.
        Hum. Reprod. 2013; 28: 178-188
        • Roth Z.
        • Aroyo A.
        • Yavin S.
        • Arav A.
        The antioxidant epigallocatechin gallate (EGCG) moderates the deleterious effects of maternal hyperthermia on follicle-enclosed oocytes in mice.
        Theriogenology. 2008; 70: 887-897
        • Roychoudhury S.
        • Sharma R.
        • Sikka S.
        • Agarwal A.
        Diagnostic application of total antioxidant capacity in seminal plasma to assess oxidative stress in male factor infertility.
        J. Assist. Reprod. Genet. 2016; 2016: 627-635
        • Rozeboom K.
        Composition for preserving reproductive cells and method of using.
        (Google Patents)2012
        • Saalu L.C.
        The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence based evaluation.
        Pak. J. Biol. Sci. 2010; 13: 413-422
        • Sang S.
        • Cheng X.
        • Stark R.E.
        • Rosen R.T.
        • Yang C.S.
        • Ho C.-T.
        Chemical studies on antioxidant mechanism of tea catechins: analysis of radical reaction products of catechin and epicatechin with 2, 2-diphenyl-1-picrylhydrazyl.
        Bioorg. Med. Chem. 2002; 10: 2233-2237
        • Sang S.
        • Hou Z.
        • Lambert J.D.
        • Yang C.S.
        Redox properties of tea polyphenols and related biological activities.
        Antioxid. Redox Signal. 2005; 7: 1704-1714
        • Sang S.
        • Lee M.J.
        • Yang I.
        • Buckley B.
        • Yang C.S.
        Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition.
        Rapid Commun. Mass Spectrom. 2008; 22: 1567-1578
        • Sato K.
        • Sueoka K.
        • Tanigaki R.
        • Tajima H.
        • Nakabayashi A.
        • Yoshimura Y.
        • Hosoi Y.
        Green tea extracts attenuate doxorubicin-induced spermatogenic disorders in conjunction with higher telomerase activity in mice.
        J. Assist. Reprod. Genet. 2010; 27: 501-508
        • Schramm L.
        Going green: the role of the green tea component EGCG in chemoprevention.
        J. Carcinog. Mutagen. 2013; 4: 1000142
        • Severino J.F.
        • Goodman B.A.
        • Kay C.W.
        • Stolze K.
        • Tunega D.
        • Reichenauer T.G.
        • Pirker K.F.
        Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.
        Free Radic. Biol. Med. 2009; 46: 1076-1088
        • Shapiro H.
        • Lev S.
        • Cohen J.
        • Singer P.
        Polyphenols in the prevention and treatment of sepsis syndromes: rationale and pre-clinical evidence.
        Nutrition. 2009; 25: 981-997
        • Sheldon R.
        • Kochi J.K.
        Metal-catalyzed Oxidations of Organic Compounds. Mechanistic Principles and Synthetic Methodology including Biochemical Processes.
        Academic Press, Elsevier, 2016: 424
        • Shi X.
        • Ye J.
        • Leonard S.
        • Ding M.
        • Vallyathan V.
        • Castranova V.
        • Rojanasakul Y.
        • Dong Z.
        Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr (VI)-induced DNA damage and Cr (IV)-or TPA-stimulated NF-κB activation.
        Mol. Cell. Biochem. 2000; 206: 125-132
        • Shiota S.
        • Shimizu M.
        • Mizushima T.
        • Ito H.
        • Hatano T.
        • Yoshida T.
        • Tsuchiya T.
        Marked reduction in the minimum inhibitory concentration (MIC) of. BETA.-lactams in methicillin-resistant staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis).
        Biol. Pharm. Bull. 1999; 22: 1388-1390
        • Simbula G.
        • Columbano A.
        • Ledda-Columbano G.
        • Sanna L.
        • Deidda M.
        • Diana A.
        • Pibiri M.
        Increased ROS generation and p53 activation in α-lipoic acid-induced apoptosis of hepatoma cells.
        Apoptosis. 2007; 12: 113-123
        • Siristatidis C.
        • Askoxylaki M.
        • Varounis C.
        • Kassanos D.
        • Chrelias C.
        E-selectin, resistin and reactive oxygen species levels in GnRH-agonist and-antagonist protocols in IVF/ICSI: a prospective cohort study.
        J. Assist. Reprod. Genet. 2015; 32: 959-967
        • Sirk T.W.
        • Brown E.F.
        • Friedman M.
        • Sum A.K.
        Molecular binding of catechins to biomembranes: relationship to biological activity.
        J. Agric. Food Chem. 2009; 57: 6720-6728
        • Someya S.
        • Yoshiki Y.
        • Okubo K.
        Antioxidant compounds from bananas (Musa Cavendish).
        Food Chem. 2002; 79: 351-354
        • Spinaci M.
        • Volpe S.
        • De Ambrogi M.
        • Tamanini C.
        • Galeati G.
        Effects of epigallocatechin-3-gallate (EGCG) on in vitro maturation and fertilization of porcine oocytes.
        Theriogenology. 2008; 69: 877-885
        • Suh K.S.
        • Chon S.
        • Oh S.
        • Kim S.W.
        • Kim J.-W.
        • Kim Y.S.
        • Woo J.-T.
        Prooxidative effects of green tea polyphenol (−)-epigallocatethin-3-gallate on the HIT-T15 pancreatic beta cell line.
        Cell Biol. Toxicol. 2010; 26: 189-199
        • Tamura H.
        • Matsui M.
        Inhibitory effects of green tea and grape juice on the phenol sulfotransferase activity of mouse intestines and human colon carcinoma cell line, Caco-2.
        Biol. Pharm. Bull. 2000; 23: 695-699
        • Uekusa Y.
        • Kamihira M.
        • Nakayama T.
        Dynamic behavior of tea catechins interacting with lipid membranes as determined by NMR spectroscopy.
        J. Agric. Food Chem. 2007; 55: 9986-9992
        • Ullmann U.
        • Haller J.
        • Decourt J.D.
        • Girault J.
        • Spitzer V.
        • Weber P.
        Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers.
        Int. J. Vitam. Nutr. Res. 2004; 74: 269-278
        • Vahedi V.
        • Zeinoaldini S.
        • Kohram H.
        • Farahavar A.
        Retinoic acid effects on nuclear maturation of bovine oocytes in vitro.
        Afr. J. Biotechnol. 2009; 8
        • Valcic S.
        • Burr J.A.
        • Timmermann B.N.
        • Liebler D.C.
        Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin from their reactions with peroxyl radicals.
        Chem. Res. Toxicol. 2000; 13: 801-810
        • Van Acker S.A.
        • Tromp M.N.
        • Griffioen D.H.
        • Van Bennekom W.P.
        • Van Der Vijgh W.J.
        • Bast A.
        Structural aspects of antioxidant activity of flavonoids.
        Free Radic. Biol. Med. 1996; 20: 331-342
        • Vergote D.
        • Cren-Olivé C.
        • Chopin V.
        • Toillon R.-A.
        • Rolando C.
        • Hondermarck H.
        • Le Bourhis X.
        (−)-Epigallocatechin (EGC) of green tea induces apoptosis of human breast cancer cells but not of their normal counterparts.
        Breast Cancer Res. Treat. 2002; 76: 195-201
        • Vittal R.
        • Selvanayagam Z.E.
        • Sun Y.
        • Hong J.
        • Liu F.
        • Chin K.-V.
        • Yang C.S.
        Gene expression changes induced by green tea polyphenol (−)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray.
        Mol. Cancer Ther. 2004; 3: 1091-1099
        • Wang T.-Y.
        • Li Q.
        • Li Q.
        • Li H.
        • Zhu J.
        • Cui W.
        • Jiao G.-Z.
        • Tan J.-H.
        Non-frozen preservation protocols for mature mouse oocytes dramatically extend their developmental competence by reducing oxidative stress.
        Mol. Hum. Reprod. 2014; 20: 318-329
        • Wang Z.-G.
        • Yu S.-D.
        • Xu Z.-R.
        Improvement in bovine embryo production in vitro by treatment with green tea polyphenols during in vitro maturation of oocytes.
        Anim. Reprod. Sci. 2007; 100: 22-31
        • Warden B.A.
        • Smith L.S.
        • Beecher G.R.
        • Balentine D.A.
        • Clevidence B.A.
        Catechins are bioavailable in men and women drinking black tea throughout the day.
        J. Nutr. 2001; 131: 1731-1737
        • Williams A.C.
        • Ford W.L.
        Relationship between ROS production and lipid peroxidation in human sperm suspensions and their association with sperm function.
        Fertil. Steril. 2005; 83: 929-937
        • Wittayarat M.
        • Ito A.
        • Kimura T.
        • Namula Z.
        • Luu V.V.
        • Do L.T.K.
        • Sato Y.
        • Taniguchi M.
        • Otoi T.
        Effects of green tea polyphenol on the quality of canine semen after long-term storage at 5 C.
        Reprod. Biol. 2013; 13: 251-254
        • Wright C.
        • Milne S.
        • Leeson H.
        Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility.
        Reprod. Biomed. Online. 2014; 28: 684-703
        • Xu H.
        • Lui W.
        • Chu C.
        • Ng P.
        • Wang C.
        • Rogers M.
        Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model.
        Hum. Reprod. 2009; 24: 608-618
        • Xu H.
        • Becker C.M.
        • Lui W.T.
        • Chu C.Y.
        • Davis T.N.
        • Kung A.L.
        • Birsner A.E.
        • D'amato R.J.
        • Man G.C.W.
        • Wang C.C.
        Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo.
        Fertil. Steril. 2011; 96 (e1): 1021-1028
        • Yang C.S.
        • Chen L.
        • Lee M.J.
        • Balentine D.
        • Kuo M.C.
        • Schantz S.P.
        Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers.
        Cancer Epidemiol. Biomarkers Prev. 1998; 7: 351-354
        • Yang C.S.
        • Lambert J.D.
        • Sang S.
        Antioxidative and anti-carcinogenic activities of tea polyphenols.
        Arch. Toxicol. 2009; 83: 11-21
        • Yang G.-Z.
        • Wang Z.-J.
        • Bai F.
        • Qin X.-J.
        • Cao J.
        • Lv J.-Y.
        • Zhang M.-S.
        Epigallocatechin-3-gallate protects HUVECs from PM2. 5-induced oxidative stress injury by activating critical antioxidant pathways.
        Molecules. 2015; 20: 6626-6639
        • Yassa H.A.
        • George S.M.
        • Refaiy Ael R.
        • Moneim E.M.
        Camellia sinensis (green tea) extract attenuate acrylamide induced testicular damage in albino rats.
        Environ. Toxicol. 2014; 29: 1155-1161
        • Yavari M.
        • Naoi H.
        • Kaedei Y.
        • Tanihara F.
        • Namula Z.
        • Viet V.L.
        • Otoi T.
        Effects of epigallocatechin-3-gallate (EGCG) on the developmental competence of parthenogenetic embryos in pig.
        Ital. J. Anim. Sci. 2010; 9: 73
        • Zanchi M.M.
        • Manfredini V.
        • Dos Santos Brum D.
        • Vargas L.M.
        • Spiazzi C.C.
        • Soares M.B.
        • Izaguirry A.P.
        • Santos F.W.
        Green tea infusion improves cyclophosphamide-induced damage on male mice reproductive system.
        Toxicol. Rep. 2015; 2: 252-260
        • Zhu N.
        • Huang T.-C.
        • Yu Y.
        • Lavoie E.J.
        • Yang C.S.
        • Ho C.-T.
        Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H2O2.
        J. Agric. Food Chem. 2000; 48: 979-981

      Biography

      Shubhadeep Roychoudhury is an Assistant Professor at the Department of Life Science and Bioinformatics, Assam University, Silchar, India. He did his MSc and PhD in Biotechnology at Slovakia University of Agriculture in 2007 and 2010 respectively. He worked at Cleveland Clinic's American Center for Reproductive Medicine as a Researcher in Andrology under the supervision of Professor Ashok Agarwal from 2015 to 2016.
      Key message
      The outstanding antioxidant activity of green tea catechins demonstrated in vitro represents its great potential in improving fertility potential in human by alleviation of oxidative stress. Results from in-vivo studies are eagerly awaited.