Advertisement

A search for molecular mechanisms underlying male idiopathic infertility

Published:December 27, 2017DOI:https://doi.org/10.1016/j.rbmo.2017.12.005

      Abstract

      Infertility affects approximately 15% of the couples wanting to conceive. In 30 − 40% of the cases the aetiology of male infertility remains unknown and is called idiopathic male infertility. When assisted reproductive technologies are used to obtain pregnancy, an adequate (epi)genetic diagnosis of male infertility is of major importance to evaluate if a genetic abnormality will be transmitted to the offspring. In addition, there is need for better diagnostic seminal biomarkers to assess the success rates of these assisted reproductive technologies. This review investigated the possible causes and molecular mechanisms underlying male idiopathic infertility by extensive literature searches of: (i) causal gene mutations; (ii) proteome studies of spermatozoa from idiopathic infertile men;(iii) the role of epigenetics; (iv) post-translational modifications; and (v) sperm DNA fragmentation in infertile men. In conclusion, male infertility is a complex, multi-factorial disorder and the underlying causes often remain unknown. Further research on the (epi)genetic and molecular defects in spermatogenesis and sperm function is necessary to improve the diagnosis and to develop more personalized treatments of men with idiopathic infertility.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Aitken R.J.
        • Baker M.A.
        • Nixon B.
        Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress?.
        Asian J. Androl. 2015; 17: 633-639https://doi.org/10.4103/1008-682X.153850
        • Aitken R.J.
        • Gibb Z.
        • Baker M.A.
        • Drevet J.
        • Gharagozloo P.
        Causes and consequences of oxidative stress in spermatozoa.
        Reprod. Fertil. Dev. 2016; 28: 1https://doi.org/10.1071/RD15325
        • Amaral A.
        • Castillo J.
        • Ramalho-Santos J.
        • Oliva R.
        The combined human sperm proteome: cellular pathways and implications for basic and clinical science.
        Hum. Reprod. Update. 2014; 20: 40-62https://doi.org/10.1093/humupd/dmt046
        • Amaral A.
        • Paiva C.
        • Attardo Parrinello C.
        • Estanyol J.M.
        • Ballescà J.L.
        • Ramalho-Santos J.
        • Oliva R.
        Identification of proteins involved in human sperm motility using high-throughput differential proteomics.
        J. Proteome Res. 2014; 13: 5670-5684https://doi.org/10.1021/pr500652y
        • Amiri-Yekta A.
        • Coutton C.
        • Kherraf Z.-E.
        • Karaouzene T.
        • Le Tanno P.
        • Sanati M.H.
        • Sabbaghian M.
        • Almadani N.
        • Sadighi Gilani M.A.
        • Hosseini S.H.
        • Bahrami S.
        • Daneshipour A.
        • Bini M.
        • Arnoult C.
        • Colombo R.
        • Gourabi H.
        • Ray P.F.
        Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations.
        Hum. Reprod. 2016; 31: 2872-2880https://doi.org/10.1093/humrep/dew262
        • Amos L.A.
        The tektin family of microtubule-stabilizing proteins.
        Genome Biol. 2008; 9: 229https://doi.org/10.1186/gb-2008-9-7-229
        • Andersson A.-M.
        • Jorgensen N.
        • Main K.M.
        • Toppari J.
        • Rajpert-De Meyts E.
        • Leffers H.
        • Juul A.
        • Jensen T.K.
        • Skakkebaek N.E.
        Adverse trends in male reproductive health: we may have reached a crucial ‘tipping point’.
        Int. J. Androl. 2008; 31: 74-80https://doi.org/10.1111/j.1365-2605.2007.00853.x
        • Avenarius M.R.
        • Hildebrand M.S.
        • Zhang Y.
        • Meyer N.C.
        • Smith L.L.H.
        • Kahrizi K.
        • Najmabadi H.
        • Smith R.J.H.
        Human male infertility caused by mutations in the CATSPER1 channel protein.
        Am. J. Hum. Genet. 2009; 84: 505-510https://doi.org/10.1016/j.ajhg.2009.03.004
        • Avidan N.
        • Tamary H.
        • Dgany O.
        • Cattan D.
        • Pariente A.
        • Thulliez M.
        • Borot N.
        • Moati L.
        • Barthelme A.
        • Shalmon L.
        • Krasnov T.
        • Ben-Asher E.
        • Olender T.
        • Khen M.
        • Yaniv I.
        • Zaizov R.
        • Shalev H.
        • Delaunay J.
        • Fellous M.
        • Lancet D.
        • Beckmann J.S.
        CATSPER2, a human autosomal nonsyndromic male infertility gene.
        Eur. J. Hum. Genet. 2003; 11: 497-502https://doi.org/10.1038/sj.ejhg.5200991
        • Ayhan Ö.
        • Balkan M.
        • Guven A.
        • Hazan R.
        • Atar M.
        • Tok A.
        • Tolun A.
        Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia.
        J. Med. Genet. 2014; 51: 239-244https://doi.org/10.1136/jmedgenet-2013-102102
        • Azpiazu R.
        • Amaral A.
        • Castillo J.
        • Estanyol J.M.
        • Guimerà M.
        • Ballescà J.L.
        • Balasch J.
        • Oliva R.
        High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction.
        Hum. Reprod. 2014; 29: 1225-1237https://doi.org/10.1093/humrep/deu073
        • Ben Khelifa M.
        • Coutton C.
        • Zouari R.
        • Karaouzene T.
        • Rendu J.
        • Bidart M.
        • Yassine S.
        • Pierre V.
        • Delaroche J.
        • Hennebicq S.
        • Grunwald D.
        • Escalier D.
        • Pernet-Gallay K.
        • Jouk P.-S.
        • Thierry-Mieg N.
        • Toure A.
        • Arnoult C.
        • Ray P.F.
        Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella.
        Am. J. Hum. Genet. 2014; 94: 95-104https://doi.org/10.1016/j.ajhg.2013.11.017
        • Bolcun-Filas E.
        • Speed R.
        • Taggart M.
        • Grey C.
        • De Massy B.
        • Benavente R.
        • Cooke H.J.
        Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.
        PLoS Genet. 2009; 5https://doi.org/10.1371/journal.pgen.1000393
        • Cardullo R.A.
        • Baltz J.M.
        Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency.
        Cell Motil. Cytoskeleton. 1991; 19: 180-188https://doi.org/10.1002/cm.970190306
        • Carrell D.T.
        Epigenetics of the male gamete.
        Fertil. Steril. 2012; 97: 267-274https://doi.org/10.1016/j.fertnstert.2011.12.036
        • Carrell D.T.
        • Aston K.I.
        • Oliva R.
        • Emery B.R.
        • De Jonge C.J.
        The ‘omics’ of human male infertility: integrating big data in a systems biology approach.
        Cell Tissue Res. 2016; 363: 295-312https://doi.org/10.1007/s00441-015-2320-7
        • Chan C.C.
        • Shui H.A.
        • Wu C.H.
        • Wang C.Y.
        • Sun G.H.
        • Chen H.M.
        • Wu G.J.
        Motility and protein phosphorylation in healthy and asthenozoospermic sperm.
        J. Proteome Res. 2009; 8: 5382-5386https://doi.org/10.1021/pr9003932
        • Clapham D.E.
        Calcium signaling.
        Cell. 2007; https://doi.org/10.1016/j.cell.2007.11.028
        • Coutton C.
        • Escoffier J.
        • Martinez G.
        • Arnoult C.
        • Ray P.F.
        Teratozoospermia: spotlight on the main genetic actors in the human.
        Hum. Reprod. Update. 2015; 21: 455-485https://doi.org/10.1093/humupd/dmv020
        • Curi S.M.
        • Ariagno J.I.
        • Chenlo P.H.
        • Mendeluk G.R.
        • Pugliese M.N.
        • Sardi Segovia L.M.
        • Repetto H.E.H.
        • Blanco A.M.
        Asthenozoospermia: analysis of a large population.
        Arch. Androl. 2003; 49: 343-349
        • du Plessis S.S.
        • Agarwal A.
        • Mohanty G.
        • van der Linde M.
        Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?.
        Asian J. Androl. 2015; 17: 230-235https://doi.org/10.4103/1008-682X.135123
        • Dam A.H.D.M.
        • Koscinski I.
        • Kremer J.A.M.
        • Moutou C.
        • Jaeger A.-S.
        • Oudakker A.R.
        • Tournaye H.
        • Charlet N.
        • Lagier-Tourenne C.
        • van Bokhoven H.
        • Viville S.
        Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia.
        Am. J. Hum. Genet. 2007; 81: 813-820https://doi.org/10.1086/521314
        • Dirami T.
        • Rode B.
        • Jollivet M.
        • Da Silva N.
        • Escalier D.
        • Gaitch N.
        • Norez C.
        • Tuffery P.
        • Wolf J.P.
        • Becq F.
        • Ray P.F.
        • Dulioust E.
        • Gacon G.
        • Bienvenu T.
        • Touré A.
        Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia.
        Am. J. Hum. Genet. 2013; 92: 760-766https://doi.org/10.1016/j.ajhg.2013.03.016
        • Dix D.J.
        • Allen J.W.
        • Collins B.W.
        • Mori C.
        • Nakamura N.
        • Poorman-Allen P.
        • Goulding E.H.
        • Eddy E.M.
        Targeted gene disruption of Hsp70–2 results in failed meiosis, germ cell apoptosis, and male infertility.
        Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 3264-3268https://doi.org/10.1073/pnas.93.8.3264
        • Dix D.J.
        • Allen J.W.
        • Collins B.W.
        • Poorman-Allen P.
        • Mori C.
        • Blizard D.R.
        • Brown P.R.
        • Goulding E.H.
        • Strong B.D.
        • Eddy E.M.
        HSP70–2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes.
        Development. 1997; 124: 4595-4603
        • Djureinovic D.
        • Fagerberg L.
        • Hallstrom B.
        • Danielsson A.
        • Lindskog C.
        • Uhlen M.
        • Ponten F.
        The human testis-specific proteome defined by transcriptomics and antibody-based profiling.
        Mol. Hum. Reprod. 2014; 20: 476-488https://doi.org/10.1093/molehr/gau018
        • Dupont C.
        • Armant D.R.
        • Brenner C.A.
        Epigenetics: definition, mechanisms and clinical perspective.
        Semin. Reprod. Med. 2009; 27: 351-357https://doi.org/10.1055/s-0029-1237423
        • ElInati E.
        • Fossard C.
        • Okutman O.
        • Ghédir H.
        • Ibala-Romdhane S.
        • Ray P.F.
        • Saad A.
        • Hennebicq S.
        • Viville S.
        A new mutation identified in SPATA16 in two globozoospermic patients.
        J. Assist. Reprod. Genet. 2016; : 1-6https://doi.org/10.1007/s10815-016-0715-3
        • Escoffier J.
        • Lee H.C.
        • Yassine S.
        • Zouari R.
        • Martinez G.
        • Karaouzene T.
        • Coutton C.
        • Kherraf Z.-E.
        • Halouani L.
        • Triki C.
        • Nef S.
        • Thierry-Mieg N.
        • Savinov S.N.
        • Fissore R.
        • Ray P.F.
        • Arnoult C.
        Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP.
        Hum. Mol. Genet. 2016; 25: 878-891https://doi.org/10.1093/hmg/ddv617
        • European Association of Urology
        Guidelines on Male Infertility.
        2015https://doi.org/10.1007/978-1-60761-193-6
        • Fagerberg L.
        • Hallstrom B.M.
        • Oksvold P.
        • Kampf C.
        • Djureinovic D.
        • Odeberg J.
        • Habuka M.
        • Tahmasebpoor S.
        • Danielsson A.
        • Edlund K.
        • Asplund A.
        • Sjostedt E.
        • Lundberg E.
        • Szigyarto C.A.-K.
        • Skogs M.
        • Takanen J.O.
        • Berling H.
        • Tegel H.
        • Mulder J.
        • Nilsson P.
        • Schwenk J.M.
        • Lindskog C.
        • Danielsson F.
        • Mardinoglu A.
        • Sivertsson A.
        • von Feilitzen K.
        • Forsberg M.
        • Zwahlen M.
        • Olsson I.
        • Navani S.
        • Huss M.
        • Nielsen J.
        • Ponten F.
        • Uhlen M.
        Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.
        Mol. Cell. Proteomics. 2014; 13: 397-406https://doi.org/10.1074/mcp.M113.035600
        • Falender A.E.
        • Freiman R.N.
        • Geles K.G.
        • Lo K.C.
        • Hwang K.
        • Lamb D.J.
        • Morris P.L.
        • Tjian R.
        • Richards J.S.
        Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID.
        Genes Dev. 2005; 19: 794-803https://doi.org/10.1101/gad.1290105
        • Hamada A.
        • Esteves S.C.
        • Agarwal A.
        Unexplained male infertility: potential causes and management.
        Hum. Androlog. 2011; 38: 2-16https://doi.org/10.1097/01.XHA.0000397686.82729.09
        • Hashemitabar M.
        • Sabbagh S.
        • Orazizadeh M.
        • Ghadiri A.
        • Bahmanzadeh M.
        A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia.
        J. Assist. Reprod. Genet. 2015; 32: 853-863https://doi.org/10.1007/s10815-015-0465-7
        • Jenkins T.G.
        • Aston K.I.
        • James E.R.
        • Carrell D.T.
        Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications.
        Syst. Biol. Reprod. Med. 2017; 63: 69-76https://doi.org/10.1080/19396368.2016.1274791
        • Jodar M.
        • Soler-Ventura A.
        • Oliva R.
        Semen proteomics and male infertility.
        J. Proteomics. 2016; https://doi.org/10.1016/j.jprot.2016.08.018
        • Kashir J.
        • Konstantinidis M.
        • Jones C.
        • Lemmon B.
        • Chang Lee H.
        • Hamer R.
        • Heindryckx B.
        • Deane C.M.
        • De Sutter P.
        • Fissore R.A.
        • Parrington J.
        • Wells D.
        • Coward K.
        A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCζ) leads to male infertility.
        Hum. Reprod. 2012; 27: 222-231https://doi.org/10.1093/humrep/der384
        • Krausz C.
        • Escamilla A.R.
        • Chianese C.
        Genetics of male infertility: from research to clinic.
        Reproduction. 2015; 150: R159-R174https://doi.org/10.1530/REP-15-0261
        • Kuo Y.-C.
        • Lin Y.-H.
        • Chen H.-I.
        • Wang Y.-Y.
        • Chiou Y.-W.
        • Lin H.-H.
        • Pan H.-A.
        • Wu C.-M.
        • Su S.-M.
        • Hsu C.-C.
        • Kuo P.-L.
        SEPT12 mutations cause male infertility with defective sperm annulus.
        Hum. Mutat. 2012; 33: 710-719https://doi.org/10.1002/humu.22028
        • Légaré C.
        • Droit A.
        • Fournier F.
        • Bourassa S.
        • Force A.
        • Cloutier F.
        • Tremblay R.
        • Sullivan R.
        Investigation of male infertility using quantitative comparative proteomics.
        J. Proteome Res. 2014; 13: 5403-5414https://doi.org/10.1021/pr501031x
        • Liao T.-T.
        • Xiang Z.
        • Zhu W.-B.
        • Fan L.-Q.
        Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry.
        Asian J. Androl. 2009; 11: 683-693https://doi.org/10.1038/aja.2009.59
        • Lin Y.-H.
        • Chou C.-K.
        • Hung Y.-C.
        • Yu I.-S.
        • Pan H.-A.
        • Lin S.-W.
        • Kuo P.-L.
        SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos.
        Fertil. Steril. 2011; 95: 363-365https://doi.org/10.1016/j.fertnstert.2010.07.1064
        • Lu L.
        • Lin M.
        • Xu M.
        • Zhou Z.-M.
        • Sha J.-H.
        Gene functional research using polyethylenimine-mediated in vivo gene transfection into mouse spermatogenic cells.
        Asian J. Androl. 2006; 8: 53-59https://doi.org/10.1111/j.1745-7262.2006.00089.x
        • Lutzmann M.
        • Grey C.
        • Traver S.
        • Ganier O.
        • Maya-Mendoza A.
        • Ranisavljevic N.
        • Bernex F.
        • Nishiyama A.
        • Montel N.
        • Gavois E.
        • Forichon L.
        • de Massy B.
        • Méchali M.
        MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination.
        Mol. Cell. 2012; 47: 523-534https://doi.org/10.1016/j.molcel.2012.05.048
        • Machesky L.M.
        • Insall R.H.
        Signaling to actin dynamics.
        J. Cell Biol. 1999; 146: 267-272
        • Maor-Sagie E.
        • Cinnamon Y.
        • Yaacov B.
        • Shaag A.
        • Goldsmidt H.
        • Zenvirt S.
        • Laufer N.
        • Richler C.
        • Frumkin A.
        Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia.
        J. Assist. Reprod. Genet. 2015; 32: 887-891https://doi.org/10.1007/s10815-015-0445-y
        • Martínez-Heredia J.
        • de Mateo S.
        • Vidal-Taboada J.M.
        • Ballescà J.L.
        • Oliva R.
        Identification of proteomic differences in asthenozoospermic sperm samples.
        Hum. Reprod. 2008; 23: 783-791https://doi.org/10.1093/humrep/den024
        • Mitchell M.J.
        • Metzler-Guillemain C.
        • Aminata T.
        • Coutton C.
        • Arnoult C.
        • Ray P.F.
        Single gene defects leading to sperm quantitative anomalies.
        Clin. Genet. 2017; 91: 208-216https://doi.org/10.1111/cge.12900
        • Neto F.T.L.
        • Bach P.V.
        • Najari B.B.
        • Li P.S.
        • Goldstein M.
        Spermatogenesis in Humans and its affecting factors.
        Semin. Cell Dev. Biol. 2016; https://doi.org/10.1016/j.semcdb.2016.04.009
        • Nieschlag E.
        • Behre H.M.
        • Nieschlag S.
        Male Reproductive Health and Dysfunction.
        2010https://doi.org/10.1007/978-3-540-78355-8
        • Nixon B.
        • Bromfield E.
        • Dun M.
        • Redgrove K.
        • McLaughlin E.
        • Aitken R.
        The role of the molecular chaperone heat shock protein A2 (HSPA2) in regulating human sperm-egg recognition.
        Asian J. Androl. 2015; 17: 568https://doi.org/10.4103/1008-682X.151395
        • Oiki S.
        • Hiyama E.
        • Gotoh T.
        • Iida H.
        Localization of Tektin 1 at both acrosome and flagella of mouse and bull spermatozoa.
        Zoolog. Sci. 2014; 31: 101-107https://doi.org/10.2108/zsj.31.101
        • Okutman O.
        • Muller J.
        • Baert Y.
        • Serdarogullari M.
        • Gultomruk M.
        • Piton A.
        • Rombaut C.
        • Benkhalifa M.
        • Teletin M.
        • Skory V.
        • Bakircioglu E.
        • Goossens E.
        • Bahceci M.
        • Viville S.
        Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family.
        Hum. Mol. Genet. 2015; 24: 5581-5588https://doi.org/10.1093/hmg/ddv290
        • Oleszczuk K.
        • Augustinsson L.
        • Bayat N.
        • Giwercman A.
        • Bungum M.
        Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples.
        Andrology. 2013; 1: 357-360https://doi.org/10.1111/j.2047-2927.2012.00041.x
        • Park J.
        • Long D.T.
        • Lee K.Y.
        • Abbas T.
        • Shibata E.
        • Negishi M.
        • Luo Y.
        • Schimenti J.C.
        • Gambus A.
        • Walter J.C.
        • Dutta A.
        The MCM8-MCM9 Complex Promotes RAD51 Recruitment at DNA Damage Sites To Facilitate Homologous Recombination.
        Mol. Cell. Biol. 2013; 33: 1632-1644https://doi.org/10.1128/MCB.01503-12
        • Parte P.P.
        • Rao P.
        • Redij S.
        • Lobo V.
        • D'Souza S.J.
        • Gajbhiye R.
        • Kulkarni V.
        Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MSE) reveals altered proteomic signatures in asthenozoospermia.
        J. Proteomics. 2012; 75: 5861-5871https://doi.org/10.1016/j.jprot.2012.07.003
        • Pierre V.
        • Martinez G.
        • Coutton C.
        • Delaroche J.
        • Yassine S.
        • Novella C.
        • Pernet-Gallay K.
        • Hennebicq S.
        • Ray P.F.
        • Arnoult C.
        Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus.
        Development. 2012; 139: 2955-2965https://doi.org/10.1242/dev.077982
        • Pixton K.L.
        • Deeks E.D.
        • Flesch F.M.
        • Moseley F.L.C.
        • Björndahl L.
        • Ashton P.R.
        • Barratt C.L.R.
        • Brewis I.A.
        Sperm proteome mapping of a patient who experiencd failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report.
        Hum. Reprod. 2004; 19: 1438-1447https://doi.org/10.1093/humrep/deh224
        • Punab M.
        • Poolamets O.
        • Paju P.
        • Vihljajev V.
        • Pomm K.
        • Ladva R.
        • Korrovits P.
        • Laan M.
        Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts.
        Hum. Reprod. 2016; 32: 1-14https://doi.org/10.1093/humrep/dew284
        • Ray P.F.
        • Toure A.
        • Mitchell M.J.
        Genetic abnormalities leading to qualitative defects of sperm morphology or function.
        Clin. Genet. 2017; 91: 217-232https://doi.org/10.1111/cge.12905
        • Rode B.
        • Dirami T.
        • Bakouh N.
        • Rizk-rabin M.
        • Norez C.
        • Lhuillier P.
        • Lorès P.
        • Jollivet M.
        • Melin P.
        • Zvetkova I.
        • Bienvenu T.
        • Becq F.
        • Planelles G.
        • Edelman A.
        • Gacon G.
        • Touré A.
        The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation.
        Hum. Mol. Genet. 2012; 21: 1287-1298https://doi.org/10.1093/hmg/ddr558
        • Samanta L.
        • Swain N.
        • Ayaz A.
        • Venugopal V.
        • Agarwal A.
        Post-translational modifications in sperm proteome: the chemistry of proteome diversifications in the pathophysiology of male factor infertility.
        Biochim. Biophys. Acta. 2016; 1860: 1450-1465https://doi.org/10.1016/j.bbagen.2016.04.001Review
        • Sanocka D.
        • Miesel R.
        • Jedrzejczak P.
        • Kurpisz M.K.
        Oxidative stress and male infertility.
        J. Androl. 1996; 17: 449-454
        • Shen S.
        • Wang J.
        • Liang J.
        • He D.
        Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia.
        World J. Urol. 2013; 31: 1395-1401https://doi.org/10.1007/s00345-013-1023-5
        • Simon L.
        • Zini A.
        • Dyachenko A.
        • Ciampi A.
        • Carrell D.T.
        A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome.
        Asian J. Androl. 2016; : 1-11https://doi.org/10.4103/1008-682X.182822
        • Siva A.B.
        • Kameshwari D.B.
        • Singh V.
        • Pavani K.
        • Sundaram C.S.
        • Rangaraj N.
        • Deenadayal M.
        • Shivaji S.
        Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex.
        Mol. Hum. Reprod. 2010; 16: 452-462https://doi.org/10.1093/molehr/gaq009
        • Stival C.
        • Puga Molina Ldel C.
        • Paudel B.
        • Buffone M.G.
        • Visconti P.E.
        • Krapf D.
        Sperm capacitation and acrosome reaction in mammalian sperm.
        Adv. Anat. Embryol. Cell Biol. 2016; 220: 93-106https://doi.org/10.1007/978-3-319-30567-7_5
        • Swan S.H.
        • Elkin E.P.
        • Fenster L.
        The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996.
        Environ. Health Perspect. 2000; 108: 961-966
        • Takiguchi H.
        • Murayama E.
        • Kaneko T.
        • Kurio H.
        • Toshimori K.
        • Iida H.
        Characterization and subcellular localization of Tektin 3 in rat spermatozoa.
        Mol. Reprod. Dev. 2011; 78: 611-620https://doi.org/10.1002/mrd.21352
        • Tarnasky H.
        • Cheng M.
        • Ou Y.
        • Thundathil J.C.
        • Oko R.
        • van der Hoorn F.A.
        Gene trap mutation of murine outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism.
        BMC Dev. Biol. 2010; 10: 67https://doi.org/10.1186/1471-213X-10-67
        • Tenenbaum-Rakover Y.
        • Weinberg-Shukron A.
        • Renbaum P.
        • Lobel O.
        • Eideh H.
        • Gulsuner S.
        • Dahary D.
        • Abu-Rayyan A.
        • Kanaan M.
        • Levy-Lahad E.
        • Bercovich D.
        • Zangen D.
        Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure.
        J. Med. Genet. 2015; 52: 391-399https://doi.org/10.1136/jmedgenet-2014-102921
        • Touré A.
        • Lhuillier P.
        • Gossen J.A.
        • Kuil C.W.
        • Lhôte D.
        • Jégou B.
        • Escalier D.
        • Gacon G.
        The Testis Anion Transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse.
        Hum. Mol. Genet. 2007; 16: 1783-1793https://doi.org/10.1093/hmg/ddm117
        • Tournaye H.
        • Krausz C.
        • Oates R.D.
        Concepts in diagnosis and therapy for male reproductive impairment.
        Lancet Diabetes Endocrinol. 2016; 8587: 1-11https://doi.org/10.1016/S2213-8587(16)30043-2
        • Tournaye H.
        • Krausz C.
        • Oates R.D.
        Novel concepts in the aetiology of male reproductive impairment.
        Lancet Diabetes Endocrinol. 2016; 8587: 1-10https://doi.org/10.1016/S2213-8587(16)30043-2
        • Turner R.M.
        Moving to the beat: a review of mammalian sperm motility regulation.
        Reprod. Fertil. Dev. 2006; 18: 25-38https://doi.org/10.1071/RD05120
        • Tüttelmann F.
        • Meyts E.R.-D.
        • Nieschlag E.
        • Simoni M.
        Gene polymorphisms and male infertility – a meta-analysis and literature review.
        Reprod. Biomed. Online. 2007; 15: 643-658https://doi.org/10.1016/S1472-6483(10)60531-7
        • Uhlen M.
        • Fagerberg L.
        • Hallstrom B.M.
        • Lindskog C.
        • Oksvold P.
        • Mardinoglu A.
        • Sivertsson A.
        • Kampf C.
        • Sjostedt E.
        • Asplund A.
        • Olsson I.
        • Edlund K.
        • Lundberg E.
        • Navani S.
        • Szigyarto C.A.-K.
        • Odeberg J.
        • Djureinovic D.
        • Takanen J.O.
        • Hober S.
        • Alm T.
        • Edqvist P.-H.
        • Berling H.
        • Tegel H.
        • Mulder J.
        • Rockberg J.
        • Nilsson P.
        • Schwenk J.M.
        • Hamsten M.
        • von Feilitzen K.
        • Forsberg M.
        • Persson L.
        • Johansson F.
        • Zwahlen M.
        • von Heijne G.
        • Nielsen J.
        • Ponten F.
        Proteomics. Tissue-based map of the human proteome.
        Science. 2015; 347: 1260419https://doi.org/10.1126/science.1260419
        • Wang X.
        • Jin H.
        • Han F.
        • Cui Y.
        • Chen J.
        • Yang C.
        • Zhu P.
        • Wang W.
        • Jiao G.
        • Wang W.
        • Hao C.
        • Gao Z.
        Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese.
        Clin. Genet. 2017; 91: 313-321https://doi.org/10.1111/cge.12857
        • WHO
        Press ed. Examination and Processing of Human Semen. vol. V. Cambridge Univ, 2010: 286https://doi.org/10.1038/aja.2008.57
        • Wosnitzer M.
        • Goldstein M.
        • Hardy M.P.
        Review of azoospermia.
        Spermatogenesis. 2014; 4: e28218https://doi.org/10.4161/spmg.28218
        • Xu M.
        • Xiao J.
        • Chen J.
        • Li J.
        • Yin L.
        • Zhu H.
        • Zhou Z.
        • Sha J.
        Identification and characterization of a novel human testis-specific Golgi protein, NYD-SP12.
        Mol. Hum. Reprod. 2003; 9: 9-17
        • Xu W.
        • Hu H.
        • Wang Z.
        • Chen X.
        • Yang F.
        • Zhu Z.
        • Fang P.
        • Dai J.
        • Wang L.
        • Shi H.
        • Li Z.
        • Qiao Z.
        Proteomic characteristics of spermatozoa in normozoospermic patients with infertility.
        J. Proteomics. 2012; 75: 5426-5436https://doi.org/10.1016/j.jprot.2012.06.021
        • Yan W.
        • Si Y.
        • Slaymaker S.
        • Li J.
        • Zheng H.
        • Young D.L.
        • Aslanian A.
        • Saunders L.
        • Verdin E.
        • Charo I.F.
        Zmynd15 encodes a histone deacetylase-dependent transcriptional repressor essential for spermiogenesis and male fertility.
        J. Biol. Chem. 2010; 285: 31418-31426https://doi.org/10.1074/jbc.M110.116418
        • Yang F.
        • Eckardt S.
        • Leu N.A.
        • McLaughlin K.J.
        • Wang P.J.
        Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis.
        J. Cell Biol. 2008; 180: 673-679https://doi.org/10.1083/jcb.200709057
        • Yang F.
        • Gell K.
        • van der Heijden G.W.
        • Eckardt S.
        • Leu N.A.
        • Page D.C.
        • Benavente R.
        • Her C.
        • Höög C.
        • McLaughlin K.J.
        • Wang P.J.
        Meiotic failure in male mice lacking an X-linked factor Meiotic failure in male mice lacking an X-linked factor.
        Genes Dev. 2008; : 682-691https://doi.org/10.1101/gad.1613608
        • Yang F.
        • Silber S.
        • Leu N.A.
        • Oates R.D.
        • Marszalek J.D.
        • Skaletsky H.
        • Brown L.G.
        • Rozen S.
        • Page D.C.
        • Wang P.J.
        TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse.
        EMBO Mol. Med. 2015; 7: 1198-1210https://doi.org/10.15252/emmm.201404967
        • Yatsenko A.N.
        • Georgiadis A.P.
        • Ropke A.
        • Berman A.J.
        • Jaffe T.
        • Olszewska M.
        • Westernstroer B.
        • Sanfilippo J.
        • Kurpisz M.
        • Rajkovic A.
        • Yatsenko S.A.
        • Kliesch S.
        • Schlatt S.
        • Tuttelmann F.
        X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men.
        N. Engl. J. Med. 2015; 372: 2097-2107https://doi.org/10.1056/NEJMoa1406192
        • Yeh C.-H.
        • Kuo P.-L.
        • Wang Y.-Y.
        • Wu Y.-Y.
        • Chen M.-F.
        • Lin D.-Y.
        • Lai T.-H.
        • Chiang H.-S.
        • Lin Y.-H.
        SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells.
        PLoS ONE. 2015; 10 (e0120722)https://doi.org/10.1371/journal.pone.0120722
        • Yu N.Y.-L.
        • Hallstrom B.M.
        • Fagerberg L.
        • Ponten F.
        • Kawaji H.
        • Carninci P.
        • Forrest A.R.R.
        • Hayashizaki Y.
        • Uhlen M.
        • Daub C.O.
        Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium.
        Nucleic Acids Res. 2015; 43: 6787-6798https://doi.org/10.1093/nar/gkv608
        • Yunes R.
        • Doncel G.F.
        • Acosta A.A.
        Incidence of sperm-tail tyrosine phosphorylation and hyperactivated motility in normozoospermic and asthenozoospermic human sperm samples.
        Biocell. 2003; 27: 29-36
        • Zhang Y.
        • Malekpour M.
        • Al-Madani N.
        • Kahrizi K.
        • Zanganeh M.
        • Mohseni M.
        • Mojahedi F.
        • Daneshi A.
        • Najmabadi H.
        • Smith R.J.H.
        Sensorineural deafness and male infertility: a contiguous gene deletion syndrome.
        BMJ Case Rep. 2009; 2009https://doi.org/10.1136/bcr.08.2008.0645
        • Zhao C.
        • Huo R.
        • Wang F.-Q.
        • Lin M.
        • Zhou Z.-M.
        • Sha J.-H.
        Identification of several proteins involved in regulation of sperm motility by proteomic analysis.
        Fertil. Steril. 2007; 87: 436-438https://doi.org/10.1016/j.fertnstert.2006.06.057

      Biography

      An Bracke is a PhD student in the Protein Science, Proteomics and Epigenetic Signalling laboratory at the Department of Biomedical Sciences, University of Antwerp. Her doctoral thesis focuses on the role of androglobin in male infertility.
      Key message
      Multiple studies have been undertaken to unravel the genetic and molecular background underlying idiopathic male infertility. This review summarizes and discusses the results of these studies and thus supports the development of improved genetic screenings and relevant biomarkers necessary for an adequate diagnosis and more personalized treatment of male infertility.