Sexual function in women with polycystic ovary syndrome: a systematic review and meta-analysis

BIOGRAPHY
Hester Pastoor is a registered sexologist (2004) and psychotherapist (2012). She is director of the Dutch Sexological Educational Programme and President of the Dutch Scientific Society for Sexology. She is currently working on a PhD project about sexual function in women with endocrine disorders.

Hester Pastoor1,*, Reinier Timman3, Cora de Klerk2, Wichor M Bramer3, Ellen TM Laan4, Joop SE Laven1

KEY MESSAGE
Arousal, lubrication, orgasm, sexual satisfaction and self-rated sexual attractiveness are compromised in women with polycystic ovary syndrome (PCOS). Yet, a satisfying sex life is as important as it is for women without PCOS. As PCOS is a common disorder with a potentially large psychosocial effect, these topics should be part of the clinical assessment.

ABSTRACT
We present the first systematic review and meta-analysis of sexual function in women with polycystic ovary syndrome (PCOS) compared with women without PCOS. Data on this topic are limited and often contradicting. Sexual function is influenced by endocrine, mental and social factors, which are often compromised in women with PCOS. The main outcome measures were validated sexual function questionnaires and visual analogue scales (VAS). We identified and assessed 1925 original articles; 18 articles were included. Significant small effect sizes were found on sexual function subscales (total score: $P = 0.006$; arousal: $P = 0.019$; lubrication: $P = 0.023$; satisfaction: $P = 0.015$; orgasm: $P = 0.028$), indicating impaired sexual function in women with PCOS. Large effect sizes for the effect of body hair on sex were shown on VAS ($P = 0.006$); social effect of appearance ($P = 0.007$); sexual attractiveness ($P < 0.001$). Satisfaction with sex life was impaired ($P < 0.001$), but sexual satisfaction was rated equally important in women with PCOS and controls. We conclude that a satisfying sex life is important for women with PCOS; however, sexual function and feelings of sexual attractiveness are impaired. The findings imply that sexual function, sexual satisfaction and psychosocial functioning need to be part of every clinical assessment of women with PCOS.

1 Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Room Na-1516, 3000 CA Rotterdam 2040, The Netherlands
2 Department of Public Health and Primary Care, Leiden University Medical Center, Postzone V0-P, 2300 RC, Leiden 9600, The Netherlands
3 Medical Library, Erasmus MC, University Medical Center, Room Ae-324, 3000 CA Rotterdam 2040, The Netherlands
4 Department of Sexology and Psychosomatic OB&GYN, Academic Medical Center, University of Amsterdam, Room H4-140, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands

© 2018 The Authors. Published by Elsevier Ltd on behalf of Reproductive Healthcare Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

*Corresponding author. E-mail address: h.pastoor@erasmusmc.nl (H Pastoor). https://doi.org/10.1016/j.rbmo.2018.09.010

Declaration: JL has received unrestricted research grants from the following companies (in alphabetical order): Dutch Heart Foundation, Ferring. He also received consultancy fees from Danone, Metagenics Inc., Titus Healthcare, Roche and Euroscreen.

KEYWORDS
Female sexual function index
Polycystic ovary syndrome
Sexual dysfunction
Sexual satisfaction
Sexuality
INTRODUCTION

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, with an estimated prevalence of 10–15% worldwide (Aziz et al., 2016). The main characteristics are oligomenorrhea or amenorrhea, hyperandrogenism (biochemical or clinical) and polycystic ovarian morphology. A diagnosis of PCOS is made when at least two characteristics are present (Rotterdam, 2004). It is a distressing disorder associated with obesity, insulin resistance, dyslipidaemia and metabolic syndrome (Rotterdam, 2004; Fauser et al., 2012). Women with PCOS are at risk of depression, anxiety and low self-esteem, and report a lower quality of life (Elsenbruch et al., 2003; Hahn et al., 2005; Elsenbruch et al., 2006; Himlelein and Thatcher, 2006; De Niet et al., 2010; Monsson et al., 2011; Fauser et al., 2012; Voltman-Verhulst et al., 2012) than healthy women.

Treatment of PCOS is complex and varies according to symptoms and whether the woman has a desire to have children. In women who want to conceive, the first-line treatment is lifestyle modification, e.g. losing weight, exercise, healthy diet, followed by ovulation induction. Lifestyle changes contribute to optimizing success rates in establishing a pregnancy and reducing complication rates by normalizing weight and consequently insulin resistance. (Imani et al., 2000; Imani et al., 2002; Mulders et al., 2003; Pandis et al., 2013). In women who do not want to become pregnant, treatment usually consists of oral contraceptive pill (OCP) usage and lifestyle changes if indicated (Fauser et al., 2012). Both interventions aim at improving endocrine features by normalizing weight and subsequently insulin resistance and androgen metabolism. Oral contraceptive pills increase sex hormone binding globulin (SHBG) levels and hence reduce free androgen levels. As androgens play an important role in female sexual function, increased as well as reduced levels might affect sexual function (Bancroft, 2002; Davis et al., 2004; 2005; Graham et al., 2007; Caruso et al., 2009; Basson et al., 2010). In both sexes, androgens mediate sexual function through cognitive processes such as sexual fantasies (Bancroft, 2003). Hence, elevated androgen levels might affect sexual function indirectly (Bancroft, 2002; Basson et al., 2010), as found with hormonal contraception treatment (Zimmerman et al., 2014).

Research into PCOS has focused mainly on improving treatment options and pregnancy outcome (Thessalonski, 2008); however, research on the psychosocial aspects of PCOS or sexual function has only recently emerged. Data on sexual function in women with PCOS are limited and often contradicting.

Sexual function is a complex biopsychosocial phenomenon, as is PCOS. In women with PCOS, sexual function can be influenced by many factors. It is known that sexual function can be impaired by androgen levels (Bancroft, 2002; Davis et al., 2004; Davis et al., 2005; Graham et al., 2007; Caruso et al., 2009; Basson et al., 2010), obesity (Shoh, 2009; Kolotkin et al., 2012), metabolic syndrome (Borges et al., 2009; Miner et al., 2012), subfertility (Wischmann, 2010; Ferrari et al., 2013a; Wischmann, 2013; Piva et al., 2014), mental health (Kalmbach et al., 2012; Kalmbach et al., 2014; Kalmbach et al., 2015; Waldinger, 2015), body image (Woertman and van den Brink, 2012; van den Brink et al., 2013) and self-esteem (Dove and Wiederman, 2000; Hortmann et al., 2002; Middleton et al., 2008). These factors are commonly present in women with PCOS and could be contributing to their sexual dysfunction.

The aim of this systematic review and meta-analysis is to present a comprehensive overview of research on sexual function in women suffering from PCOS.

MATERIALS AND METHODS

Search strategy

The following electronic databases were searched from inception until 30 June 2017: Embase, Medline (via Ovid), Web-of-Science Core Collection, Scopus, PsychINFO (via Ovid), Cinahl (via EBSCOhost), Cochrane CENTRAL (via Wiley) and Google Scholar. Different relevant search terms (thesaurus terms and terms in title, abstract, or both) concerning PCOS and sexual function were used. To optimize the search, no restrictions on date, type of publication or language were applied. We present the used search strings in Supplementary Table 1. In addition to the electronic search, all reference lists of relevant reviews and included articles were reviewed to identify additional relevant articles.

Inclusion and exclusion criteria

After the electronic search, two authors independently selected the studies and considered all those addressing PCOS and sexual function for inclusion. To be selected for inclusion, the following criteria were used: diagnosis of PCOS by Rotterdam criteria, the former and current National Institutes of Health definition or the Androgen Excess and PCOS Society definition (Zawadski, 1990; Rotterdam, 2004; Aziz et al., 2009); adequate definition of sexual function (operationalized as desire, arousal, lubrication, orgasm, frequency of intercourse, masturbation frequency, sexual dysfunction, sexual satisfaction, sexual self-image, sexual debut and sexual distress); the use of validated sexuality questionnaires or visual analogue scales (VAS), inclusion of a control group without PCOS, age 14 years and older.

For inclusion, studies had to be original, available as full-text and written in English.

Studies unrelated to PCOS, PCOS induced by valproate use, or PCOS in combination with other illness or disease, were excluded. Moreover, studies solely concerning health-related quality of life, quality of life or mental health, and studies concerning idiopathic hyperandrogenism or hyperandrogenism caused by other diseases than PCOS, were also excluded. Review articles, PhD theses, abstracts and posters were also excluded. Initially, a selection was made based on title and abstract. Then, inclusion and exclusion criteria that were determined in advance were applied. Finally, all discrepancies in choices were discussed.

Data extraction

The following data were extracted from identified studies: study design, publication date, study period, country, sample size, diagnostic criteria for PCOS, patient and control selection procedures, response or participation rate, inclusion and exclusion criteria for cases and controls, age of population, outcome measures and intervention.

Quality assessment

We used the Newcastle–Ottawa Quality Assessment Scale (NOS), designed to...
assess study quality of non-randomized studies, including case-control and cohort studies. The selection of study groups, comparability of groups and ascertainment of either exposure or outcome of interest for case-control or cohort studies were assessed in each study (Wells, 2010). A maximum of 10 stars can be awarded using the NOS. As the NOS does not measure quality of outcome measures and of statistical analysis and reporting, two scales taken from the Quality in Prognostic Studies (QUIPS) tool were included in our quality assessment (Hoyden et al., 2013). The QUIPS awards bias ratings (low, medium, high) using several prompting items for each domain. Two authors independently assessed the quality of the included studies.

Outcome measures
Sexual function was measured using validated questionnaires. Here, we present the questionnaires and, in square parenthesis, names of (sub) scales that were used in the statistical analysis. The Female Sexual Function Index (FSFI) consists of 19 items measuring six domains [total score, desire, arousal, lubrication, orgasm, satisfaction, pain] (Rosen et al., 2000; Wieg et al., 2005). The Changes in Sexual Functioning Questionnaire (CSFQ) measures changes in sexual functioning related to illness and medication, with five domains [total score, desire/interest, desire/frequency, arousal/interest, orgasm/completion, pleasure/satisfaction] (Clayton et al., 1997a; 1997b). The Sexual Quotient-Female (SQ-F) evaluates female sexual function with 10 questions in six domains [total score] (Abdo, 2005). The McCoy nine-item Female Sexuality Questionnaire (MSQ) measures several sexual function indices [enjoyment, satisfaction, sexual thoughts, arousal, orgasm, lubrication, pain] (McCoy, 2000). The Female Sexual Desire Questionnaire (FSDQ) has 50 items divided over six domains [dyadic desire] (Goldhammer and McCabe, 2011). The Multidimensional Sexuality Questionnaire has 12 subscales [sexual satisfaction] (Snell, 1993). For all scales, higher scores are indicative of better sexual function. Finally, the Index of Sexual Satisfaction (ISS) measures sexual satisfaction [total score], with a lower total score indicating more satisfaction (Hudson et al., 1981).

Seven questions scored with VAS were available for our analysis: (1) how important is a satisfying sex life for you? (2) How many sexual thoughts and fantasies did you have in the past 4 weeks? (3) Do you find yourself sexually attractive? (4) How much does excessive body hair impact your sexuality? (5) Does your appearance make it difficult to engage in social contact? (6) How often did you experience pain during intercourse in the past 4 weeks? (7) How satisfied were you with your sex life in the past 4 weeks? (Eisenbruch et al., 2003; Hahn et al., 2005; Tan et al., 2008; Caruso et al., 2009).

Statistical methods and meta-analysis
Meta (Schwarzer, 2015) in R (version 3.4.0 (2017-04-21) was used for meta-analyses. Differences between PCOS and control women are expressed in standardized mean differences (SMD) and presented in forest plots (Supplementary FIGURE 1A, Supplementary FIGURE 1B, Supplementary FIGURE 2, and Supplementary FIGURE 3). For studies reporting medians and quartiles, the median was applied as a best estimate of the mean, and the SD was estimated as 34/50 of the interquartile range (34/60 for a study reporting an interquartile range). Reported standard errors were multiplied by Vn to obtain the standard deviation. For studies that used the same control group, the number of participants in the control group was adjusted to prevent an unduly heavy weight of this one control group. For sensitivity analysis, studies were excluded one-by-one (Sutton AJ, 2000), and outliers were defined when changes in the direction or the significance of the effect were detected.

In line with Cohen’s evaluation of effect sizes, a SMD of 0.20 is considered a small effect, 0.50 a medium effect and 0.80 a large effect (Cohen, 1992). Heterogeneity is reported with the I² statistic. The significance of heterogeneity was determined with Cochran’s Q statistic. In case of heterogeneity, Baujat plots were evaluated to determine which studies caused the heterogeneity (Baujat et al., 2002). Conclusions were based on random effect procedures to correct for unexplained heterogeneity of the studies. The random effects model uses a weighted average resulting in assigning more equal weights to all studies. In the included case intervention studies, only baseline scores were used in the statistical analysis.

RESULTS
Search results
The result of the systematic literature search is presented in FIGURE 1. Eighteen studies were eligible, representing a total number of 3903 participants. Eight studies used the FSFI (Gateva and Kamenov, 2012; Ercan et al., 2013; Ferroresi et al., 2013b; Benetti-Pinto et al., 2015; Lara et al., 2015; Noroazzadeh et al., 2016; Shafti and Shohbazi, 2016; Diamond et al., 2017). Other studies used different scales: the CSFQ (Stovall et al., 2012), the SQ-F (Zueff et al., 2015), the MFSQ (Mansson et al., 2011), the FSFQ (Elkhiat et al., 2015), the ISS (Drosdol et al., 2007) and the MSQ (Kowalczyk et al., 2015). Four studies used VAS to assess sexual function and effect of clinical characteristics on sexual function (Eisenbruch et al., 2003; Hahn et al., 2005; Tan et al., 2008; Caruso et al., 2009). Study characteristics are presented in TABLE 1 and Supplementary TABLE 2. Reasons for exclusion are presented in Supplementary TABLE 3 and Supplementary TABLE 4.

Quality assessment
The quality assessment of the included studies using NOS and QUIPS is presented in TABLE 2. The included studies are of medium to low quality. The main problems are as follows: comparability of cases and controls, ascertainment of the PCOS exposure, reporting of response rate and the quality of the statistical analyses.

META-ANALYSIS
Sexual function
The sexual function scales showed small but significant differences between women with PCOS and controls (TABLE 3). The complete analysis showed no significant differences on the total scale score and on most subscales, except satisfaction, in women with PCOS compared with control women. Baujat plots (not presented) indicated that the study by Mansson et al. (2011) was an outlier for orgasm. Also, the study by Diamond et al. (2017) was an outlier for the total score as well as for the subscales arousal and lubrication. Therefore, we also conducted a sensitivity analysis without these studies (TABLE 3). The results on the four scales changed. Women with PCOS scored significantly lower on total score (SMD = –0.21; P = 0.006), arousal (SMD = –0.16;
P = 0.019), lubrication (SMD = –0.15; P = 0.023) and orgasm (SMD = –0.17; P = 0.028).

Using VAS scores, women with PCOS reported significantly fewer sexual thoughts (SMD = –0.29; P = 0.004) than controls. No differences in the experience of pain during intercourse were found (TABLE 3).

Sexual satisfaction
The subscale satisfaction showed a significant small sized difference between PCOS and control women (SMD = –0.29; P = 0.004) than controls. No differences in the experience of pain during intercourse were found (TABLE 3).

Effect of clinical characteristics
On all three VAS scales, significant differences were found, showing disadvantages for women with PCOS. Do you find yourself sexually attractive? (SMD = –0.80; P < 0.001), how much does excessive body hair impact your sexuality? (SMD = 1.01; P < 0.006), does your appearance make it difficult to engage in social contact? (SMD = 0.65; P < 0.007) (Table 3). Baujat plots indicated that the study that caused heterogeneity for body hair and attractiveness was Caruso et al. (2009), with women with PCOS scoring exceptionally worse.

Effect of treatment interventions
Three included studies were intervention studies. It was not possible to assess the effect of interventions on sexual function in women with PCOS because all studies used different treatments: chloraminodione acetate (Caruso et al., 2009), metformin (Gateva and Kamenov, 2012) and resistance training (Lara et al., 2015).

DISCUSSION
This meta-analysis shows impaired sexual function in women with PCOS compared with control women; effect sizes were small to large. Sexuality questionnaires show small impairments, particularly arousal, lubrication, orgasm and sexual satisfaction.

In addition, based on VAS scores, women with PCOS reported fewer sexual thoughts and fantasies and less chance of establishing relationships compared with control women. Large impairments were reported on sexual attractiveness, satisfaction with their sex life and the effect of their physical appearance and body hair on sexuality. The effect sizes
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>PCOS definition</th>
<th>Outcome measure</th>
<th>Intervention</th>
<th>Year</th>
<th>Country</th>
<th>Age / range</th>
<th>n</th>
<th>Selection population; response rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elsenbruch et al., 2003</td>
<td>Cross-sectional</td>
<td>NICHD</td>
<td>VAS</td>
<td>NA</td>
<td>–</td>
<td>Germany</td>
<td>20–40</td>
<td>50</td>
<td>Outpatient endocrine clinic; website clinic; Health screening programme; university</td>
</tr>
<tr>
<td>Hahn et al., 2005</td>
<td>Cross-sectional</td>
<td>NICHD</td>
<td>VAS</td>
<td>NA</td>
<td>–</td>
<td>Germany</td>
<td>PCOS M = 29</td>
<td>120</td>
<td>Outpatient endocrine clinic; website clinic; Health screening programme; university</td>
</tr>
<tr>
<td>Drozdzol et al., 2007</td>
<td>Cross-sectional</td>
<td>ESHRE, Rotterdam criteria</td>
<td>ISS</td>
<td>NA</td>
<td>–</td>
<td>Poland</td>
<td>19–40</td>
<td>120</td>
<td>University Hospital: Obstetrics and Gynaecology and Gynaecological Endocrinology Controls 40</td>
</tr>
<tr>
<td>Tan et al., 2008</td>
<td>Cross-sectional</td>
<td>NICHD</td>
<td>VAS</td>
<td>NA</td>
<td>–</td>
<td>Germany</td>
<td>PCOS M = 28</td>
<td>115</td>
<td>Outpatient endocrine clinic; response rate near 100% Controls 50</td>
</tr>
<tr>
<td>Caruso et al., 2009</td>
<td>Prospective intervention</td>
<td>Rotterdam criteria</td>
<td>VAS</td>
<td>Oral contraceptive</td>
<td>–</td>
<td>Italy</td>
<td>18–32</td>
<td>94</td>
<td>Family planning centre; response rate 79% Controls 50</td>
</tr>
<tr>
<td>Manasson et al., 2011</td>
<td>Case control</td>
<td>Rotterdam criteria</td>
<td>McCoy- FSQ</td>
<td>NA</td>
<td>2002-2005</td>
<td>Sweden</td>
<td>–</td>
<td>49</td>
<td>Linné Infertility Clinic, Department of Obstetrics and Gynaecology and Medicine University Hospital, support community homepage Controls 49</td>
</tr>
<tr>
<td>Gateva and Kamenov, 2012</td>
<td>Cross-sectional</td>
<td>ESHRE</td>
<td>FSFI</td>
<td>Metformin</td>
<td>–</td>
<td>Bulgaria</td>
<td>18–45</td>
<td>57</td>
<td>Hospitalized patient endocrine clinic Controls 22</td>
</tr>
<tr>
<td>Stovall et al., 2012</td>
<td>Cross-sectional</td>
<td>NICHD</td>
<td>CSFQ</td>
<td>NA</td>
<td>2006–2009</td>
<td>USA</td>
<td>18–43</td>
<td>92</td>
<td>Conveninent, hospital Controls 82</td>
</tr>
<tr>
<td>Ercan et al., 2013</td>
<td>Cross-sectional</td>
<td>Rotterdam criteria</td>
<td>FSFI</td>
<td>NA</td>
<td>–</td>
<td>Turkey</td>
<td>20–40</td>
<td>32</td>
<td>Not specified; hospital; response rate 93% Controls 32</td>
</tr>
<tr>
<td>Ferraresi et al., 2013</td>
<td>Cross-sectional</td>
<td>Rotterdam criteria</td>
<td>FSFI</td>
<td>NA</td>
<td>2008–2010</td>
<td>Brazil</td>
<td>18–38</td>
<td>48</td>
<td>Consecutive sample; tertiary; hospital; response rate 83/87 total population Controls 35</td>
</tr>
<tr>
<td>Zueff 2 et al., 2014</td>
<td>Case control</td>
<td>Rotterdam criteria</td>
<td>SQ-F</td>
<td>NA</td>
<td>2009–2010</td>
<td>Brazil</td>
<td>18–40</td>
<td>43</td>
<td>Outpatient gynaecology; contraception programme Controls 44</td>
</tr>
<tr>
<td>Benetti-Pinto et al., 2015</td>
<td>Cross-sectional</td>
<td>Rotterdam criteria</td>
<td>FSFI</td>
<td>NA</td>
<td>–</td>
<td>Brazil</td>
<td>18–40</td>
<td>56</td>
<td>Gynaecology department university hospital; response rate 100% Controls 102</td>
</tr>
<tr>
<td>Elkhair et al., 2015</td>
<td>Cross-sectional</td>
<td>Medical screening according to Rotterdam criteria</td>
<td>FSQD</td>
<td>NA</td>
<td>–</td>
<td>Egypt</td>
<td>21–45</td>
<td>85</td>
<td>Gynecology and Obstetrics Clinic Gynecology and Obstetrics Clinic Controls 63</td>
</tr>
</tbody>
</table>

(Continued)
suggest that these concerns are clinically relevant.

Anxiety, depression (Kalmbach et al., 2012; Kalmbach et al., 2014) and poor body image (Woertman and van den Brink, 2012) are recognized psychosocial risk factors for sexual dysfunction and impaired sexual satisfaction. The VAS scores in our analysis also suggests that a poor body image in women with PCOS may make them more prone to sexual dysfunction compared with women without PCOS.

The finding that arousal, lubrication, orgasm and sexual satisfaction were impaired in women with PCOS but that dyspareunia (pain during intercourse) was not more common than in controls is intriguing. An explanation for this discrepancy may be that dyspareunia is also highly prevalent in women without a medical condition (Mitchell et al., 2017). Dyspareunia is not associated with one’s capacity to become genitally and subjectively aroused (Brauer et al., 2006) but seems related to the habit of prioritizing a partner’s pleasure over one’s own (Elmerstig et al., 2013; Kontulo and Miettinen, 2016), resulting in engaging in intercourse before being fully sexually aroused (Brauer et al., 2014). The net result of such behaviour dominates a possible worse dyspareunia rate in women without PCOS.

The study by Diamond et al. (2017), with a proportionately high number of participants relative to the other studies, significantly dominated the overall pattern of results. The analyses, including the latter study (Diamond et al., 2017), found fewer differences in sexual function and sexual satisfaction between women with PCOS and controls than the analyses excluding this study. The women with PCOS in this study (Diamond et al., 2017) represented a selected group of infertile individuals who were highly motivated to conceive, and who participated in a clinical trial to evaluate fertility treatment outcome. Study design characteristics may have artificially increased sexuality indices in women with PCOS. Participants were instructed to have intercourse at least two to three times a week (Legro et al., 2012; Legro et al., 2014). Combined with being highly motivated to conceive, this might have directly enhanced intercourse frequency. Additionally, the main outcome measure, the FSFI, is designed such that women who do not engage in intercourse in the 4 weeks before assessment, even if this is unrelated to

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>PCOS definition</th>
<th>Outcome measure</th>
<th>Intervention</th>
<th>Year</th>
<th>Country</th>
<th>Age / range</th>
<th>n</th>
<th>Selection population; response rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kowalczyk et al., 2015</td>
<td>Cross-sectional</td>
<td>Rotterdam criteria</td>
<td>MSQ</td>
<td>NA</td>
<td>2009</td>
<td>Poland</td>
<td>23–42</td>
<td>PCOS 73</td>
<td>University hospital: department of Gynaecologic Endocrinology; Response rate 117/128</td>
</tr>
<tr>
<td>Lara et al., 2015</td>
<td>Case control</td>
<td>Rotterdam</td>
<td>FSFI</td>
<td>Physical resistance training</td>
<td>2010–2013</td>
<td>Brazil</td>
<td>18–37</td>
<td>PCOS 43</td>
<td>Endocrine gynaecology outpatient clinic, academic medical centre</td>
</tr>
<tr>
<td>Noroozadeh et al., 2016</td>
<td>Cross-sectional population based</td>
<td>Rotterdam criteria</td>
<td>FSFI</td>
<td>NA</td>
<td>–</td>
<td>Iran</td>
<td>18–45</td>
<td>PCOS 63</td>
<td>Stratified-cluster sampling method in four provinces of various geographic regions of Iran, no response rate, flowchart with number of participants</td>
</tr>
<tr>
<td>Shafti and Shahboz, 2016</td>
<td>Casual comparative study</td>
<td>Rotterdam criteria</td>
<td>FSFI</td>
<td>NA</td>
<td>2013–2014</td>
<td>Iran</td>
<td>18–45</td>
<td>PCOS 129</td>
<td>Hospital and women infertility clinics</td>
</tr>
<tr>
<td>Diamond et al., 2017</td>
<td>Clinical trial</td>
<td>Rotterdam criteria</td>
<td>FSFI</td>
<td>Letrozole or clomiphene/gonadotropins</td>
<td>–</td>
<td>USA</td>
<td>18–39</td>
<td>PCOS 733</td>
<td>PPCOS II trial; response rate 97.7%</td>
</tr>
</tbody>
</table>

ASR, American Society of Reproduction; CSFQ, Changes in Sexual Function Questionnaire; ESHRE, European Society of Human Reproduction and Embryology; FSFI, Female Sexual Function Index; FSDQ, Female Sexual Desire Questionnaire; ISS, Index of Sexual Satisfaction; M, mean; McCoy-FSQ, McCoy Female Sexuality Questionnaire; NICHD, National Institute of Child Health and Human Development; MSQ, Multidimensional Sexuality Questionnaire; PCOS, polycystic ovary syndrome; SQ-F, Sexual Quotient; Female; VAS, visual analogue scale.
<table>
<thead>
<tr>
<th>Study</th>
<th>Adequate case definition</th>
<th>Case definition</th>
<th>Controls selection</th>
<th>Controls definition</th>
<th>Comparability cases/controls</th>
<th>Exposure ascertainment</th>
<th>Outcome measurement</th>
<th>Statistical analysis and reporting</th>
<th>Outcome category</th>
<th>Adapted from NOS</th>
<th>Adapted from QUIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisenbruch et al., 2003</td>
<td>High bias</td>
<td>Moderate bias</td>
<td>Low bias</td>
<td>High bias</td>
<td>High risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>No range</td>
<td>Low risk of bias</td>
<td>MB</td>
<td>MB</td>
</tr>
<tr>
<td>Hahn et al., 2005</td>
<td>High bias</td>
<td>Moderate bias</td>
<td>Low bias</td>
<td>High bias</td>
<td>High risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>No range</td>
<td>Low risk of bias</td>
<td>HB</td>
<td>MB</td>
</tr>
<tr>
<td>Drosdzol et al., 2007</td>
<td>High bias</td>
<td>Moderate bias</td>
<td>Low bias</td>
<td>High bias</td>
<td>High risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>No range</td>
<td>Low risk of bias</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Tan et al., 2008</td>
<td>High bias</td>
<td>Moderate bias</td>
<td>Low bias</td>
<td>High bias</td>
<td>High risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>No range</td>
<td>Low risk of bias</td>
<td>HB</td>
<td>MB</td>
</tr>
<tr>
<td>Caruso et al., 2009</td>
<td>High bias</td>
<td>Moderate bias</td>
<td>Low bias</td>
<td>High bias</td>
<td>High risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>No range</td>
<td>Low risk of bias</td>
<td>HB</td>
<td>MB</td>
</tr>
<tr>
<td>Mansson et al., 2011</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Gateva et al., 2012</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Stovall et al., 2012</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Erkan et al., 2013</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Ferraresi et al., 2013</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Zueff et al., 2014</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Benetti Pinto et al., 2015</td>
<td>High bias</td>
<td>Moderate bias</td>
<td>Low bias</td>
<td>High bias</td>
<td>High risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>LB</td>
</tr>
<tr>
<td>Elkhiat et al., 2015</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Kowalczyk et al., 2015</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Lara et al., 2015</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Noroozzadeh et al., 2017</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Shafigh and Shahbazi, 2016</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Diamond et al., 2017</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>Adequate</td>
<td>No range</td>
<td>No risk</td>
<td>LB</td>
<td>MB</td>
</tr>
</tbody>
</table>

*Outcome category: High bias: The measurement of the outcome is likely to be different related to the baseline level of the prognostic factor; Moderate bias: the measurement of the outcome may be different related to the baseline level of the prognostic factors; low bias: the measurement of the outcome is unlikely to be different related to the baseline level of the prognostic factor

Statistical analysis and reporting: High bias: the reported results are likely to be spurious or biased related to analysis or reporting; Moderate bias: the reported results may be spurious or biased related to analysis or reporting; Low bias: the reported results are unlikely to be spurious or biased related to analysis or reporting.

1 NOS: a study can be awarded a maximum of one star for each item, except for the Comparability category and Exposure ascertainment (a maximum of two stars).

2 Adequate; - not adequate; green, no risk or low risk of bias; orange, medium risk of bias; red, high risk of bias; LB, low risk of bias; MB, medium risk of bias; NOS, Newcastle–Ottawa Quality Assessment Scale; QUIPS, Quality in Prognostic Studies.
ến of the sexual function status of women with PCOS. In several studies, normalizing androgen levels in women with PCOS and without PCOS are related to sexual function. To date, it is unclear if, and to what extent, androgen levels in women with PCOS may provide a better estimation of the sexual function status of women with PCOS than the analysis including these studies.

To date, it is unclear if, and to what extent, androgen levels in women with and without PCOS are related to sexual function. In several studies, normalizing androgen levels in women with PCOS was found to be unrelated to changes in levels of sexual desire (Conaglen and Caruso et al., 2009). This may suggest that androgen levels are irrelevant for the sexual function of women with PCOS. Alternatively, perhaps an optimal balance of hormonal milieu is required for sex-hormones to influence sexual function or, perhaps, critical levels of other hormones such as oestriadiol and progesterone are also required for normal sexual functioning (Wierman et al., 2010). Finally, there may be a normal hormonal range between which women show normal sexual function (Wierman et al., 2010). Women with PCOS might well exceed this range.

Although the influence of endocrine factors in women with PCOS is far from elucidated, treatment with OCP is regarded standard clinical care, even though OCP may not decrease androgen levels to the normal hormonal range. In women with PCOS, progesterone feedback and progesterone serum levels are also compromised (Burt Solorzano et al., 2012), potentially adding to the effect that different sex steroids may have on sexual function.

Several studies have shown that use of OCP is related to a decrease in androgen levels in healthy women, potentially impairing sexual function (Burrows et al., 2012; Davis et al., 2013; Zimmerman et al., 2014; Higgins and Smith, 2016), whereas others did not (Graham et al., 1995; Sanders et al., 2001; Graham et al., 2007). Perhaps no single androgen level is predictive of low female sexual function (Davis et al., 2005). The scope of this study was not on the effect
of endocrine factors. Also, it was not possible to stratify for OCP use or endocrine factors potentially obscuring the results.

Sexual function studies in women with other hyperandrogenic disorders are relatively scarce. Several studies in women with congenital adrenal hyperplasia (CAH) have been published over the past 2 decades, with many of them focusing on gender identity, gender role behaviour, sexual orientation and age of sexual debut (Dittmann et al., 1992; Zucker et al., 1996; Joackelainen et al., 2001; Hines et al., 2004; Wisniewski et al., 2004; Zucker et al., 2004; Meyer-Bahlburg et al., 2008; Frisen et al., 2009). Studies in women with CAH focus on sexual function reported impaired sexual function as assessed with the FSFI (Gastaud et al., 2007; van der Zwan et al., 2013; Krysiak et al., 2016). These women were found to have significantly lower FSFI total and subscale scores compared with healthy controls. Although some discrepant findings were observed between studies, overall, women with CAH did report impaired sexual function.

An important strength of the present study is that it represents the first, systematic quantitative analysis of the relationship between PCOS and sexual function. The studies included in this meta-analysis were carefully assessed for quality using well-known Cochrane tools (Wells, 2010; Hayden et al., 2013).

The main limitation of this study is the relatively low number of publications that could be used for the meta-analysis. Also, study quality is limited, which may negatively affect the reliability of the findings. This limitation may be particularly relevant for the studies that used VAS scores (Elsenbruch et al., 2003; Hohn et al., 2005; Ton et al., 2008; Caruso et al., 2009). These four studies used the same control group of 50 women that participated in the study by Elsenbruch et al. (2003) (Table 1 and Supplementary Table 2). In this control group, PCOS was explicitly excluded, but the control group may not have been fully matched with the PCOS group in all four studies. We prevented this specific control group having an unduly heavy weight in the analysis by entering a total of 90 controls, but also conducted a sensitivity analysis in which each control group counted separately for each entry. Changes in results were negligible.

Another limitation is the diversity between the studies, for example four studies were from Islamic countries, including only married women (Ercan et al., 2013; Elkhait et al., 2015; Noroozadadeh et al., 2016; Shafi and Shahbazi, 2016). Other studies did not mention relationship status or sexual activity of participants (Gateva and Kamenov, 2012; Stovall et al., 2012; Lara et al., 2015). This diversity might imply that groups are not comparable.

More studies of sexual function in women with PCOS are warranted. As PCOS and sexual function are both biopsychosocial phenomena, studies should also use a biopsychosocial design. This would mean assessing psychosocial aspects using questionnaires, evaluating endocrine and genetic features and measuring genital responses to sexual stimuli, using psychophysiological measurements. Also, ideally, partners’ sexual function and sexual satisfaction should be included.

In conclusion, our findings indicate that women with PCOS have a compromised sex life. Yet, a satisfying sex life is as important for women with PCOS as for women without PCOS. This implies that women with PCOS aspire the same goals of sexuality as women without PCOS, but that they are less able to reach these goals. The findings imply that sexual function, sexual satisfaction and psychosocial functioning need to be part of the clinical assessment of every woman with PCOS.

SUPPLEMENTARY MATERIALS

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.rbmo.2018.09.010.

REFERENCES

Aboe, H.C.N. Development and validation of female sexual quotient - questionnaire to assess female sexual function. (Elaboracao e validacao do quociente sexual - versae feminina: uma escala para avaliar a funcao sexual da mulher). RBM Revista Brasileira de Medicina 2006; 69

Dove, N.L., Wiederman, M.W.

Davis, S.R., Bitzer, J., Giraldi, A., Palacios, S., Conaglen, H.M., Conaglen, J.V.

Cohen, J. A power primer. Psychol Bull 1992; 112, 155–159

Davis, S.R., Davison, S.L., Donath, S., Bell, R.J. Circulating androgen levels and self-reported sexual function in women. JAMA 2005; 294: 91–96

Gateva, A., Kamener, Z. Sexual Function in Patients with PCOS and/or Obesity before and after Metformin Treatment. Advances in Sexual Medicine 2012

Hartmann, U., Hesser, K., Ruffer-Hesse, C., Kloth, E., Eisenberg, E., Zhang, H.

Imani, B., Eijkenmans, M.J., te Velde, E.R., Cabrol, B.C. Free androgen index and leptin are the most prominent endocrine predictors of ovarian response during clomiphene citrate induction of ovulation in normogonadotropic oligoamenorrheic infertility. J Clin Endocrinol Metab 2000; 85: 65–69

