Advertisement
Article| Volume 39, ISSUE 1, P40-48, July 2019

Download started.

Ok

Inheritance of imbalances in recurrent chromosomal translocation t(11;22): clarification by PGT-SR and sperm-FISH analysis

Published:March 11, 2019DOI:https://doi.org/10.1016/j.rbmo.2019.02.010

      Abstract

      Research question

      To analyse why unbalanced viable offspring are derived mainly from the 3:1 segregation mode in t(11;22)(q23;q11.2) reciprocal translocation.

      Design

      Retrospective analysis of 24 pre-implantation genetic testing for chromosomal structural re-arrangements (PGT-SR) cycles was performed on seven male and five female carriers of t(11;22) translocation. Sperm analysis was performed on each male carrier. These patients were directed to the study centre after several years of miscarriages and/or abortions, primary infertility for male carriers or birth of an affected child.

      Results

      Twenty-four PGT-SR cycles were performed to exclude imbalances in both male and female carriers. The unbalanced embryos derived from the adjacent-1 segregation mode were the most represented in both male and female carriers (68.4% and 50%, respectively). These results were positively related with meiotic segregation analysis of reciprocal translocation in spermatozoa. A thorough analysis of the unbalanced embryo karyotypes determined that the expected viable +der22 karyotype resulting from 3:1 malsegregation was less represented at 5.3%.

      Conclusions

      These findings highlight the divergence that may exist between meiotic segregation and post-zygotic selection. Post-zygotic selection would be responsible for the elimination of unbalanced embryos derived from the adjacent-1 segregation mode. The combined action of several factors occurs at the beginning of post-zygotic selection. Genetic counselling must consider the risk of a birth related to the adjacent-1 segregation mode, irrespective of the sex of the translocation carrier. These results will allow deeper understanding of the PGT results of t(11;22) carriers, which often include a high number of aneuploid embryos.

      KEYWORDS

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abeliovich D.
        • Carmi R.
        The translocation 11q;22q: a novel unbalanced karyotype.
        Am. J. Med. Genet. 1990; 37: 288
        • Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology
        The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting.
        Hum. Reprod. 2011; 26: 1270-1283
        • Anton E.
        • Vidal F.
        • Egozcue J.
        • Blanco J.
        Preferential alternate segregation in the common t(11;22)(q23;q11) reciprocal translocation: sperm FISH analysis in two brothers.
        Reprod. Biomed. Online. 2004; 9: 637-644
        • Armstrong S.J.
        • Goldman A.S.
        • Speed R.M.
        • Hultén M.A.
        Meiotic studies of a human male carrier of the common translocation, t(11;22), suggests postzygotic selection rather than preferential 3:1 MI segregation as the cause of liveborn offspring with an unbalanced translocation.
        Am. J. Hum. Genet. 2000; 67: 601-609
        • Ashley T.
        • Gaeth A.P.
        • Inagaki H.
        • Seftel A.
        • Cohen M.M.
        • Anderson L.K.
        • Kurahashi H.
        • Emanuel B.S.
        Meiotic recombination and spatial proximity in the etiology of the recurrent t(11;22).
        Am. J. Hum. Genet. 2006; 79: 524-538
        • Bernicot I.
        • Schneider A.
        • Mace A.
        • Hamamah S.
        • Hedon B.
        • Pellestor F.
        • Anahory T.
        Analysis using fish of sperm and embryos from two carriers of rare rob(13;21) and rob(15;22) robertsonian translocation undergoing PGD.
        Eur. J. Med. Genet. 2012; 55: 245-251
        • Boué A.
        • Gallano P.
        A collaborative study of the segregation of inherited chromosome structural rearrangements in 1356 prenatal diagnoses.
        Prenat. Diagn. 1984; 4 (Spec No): 45-67
        • Braude P.
        • Bolton V.
        • Moore S.
        Human gene expression first occurs between the four- and eight-cell stages of preimplantation development.
        Nature. 1988; 332: 459-461
        • Cans C.
        • Cohen O.
        • Mermet M.-A.
        • Demongeot J.
        • Jalbert P.
        Human reciprocal translocations: is the unbalanced mode at birth predictable?.
        Hum. Genet. 1993; 91
        • Cohen O.
        • Cans C.
        • Mermet M.A.
        • Demongeot J.
        • Jalbert P.
        Viability thresholds for partial trisomies and monosomies. A study of 1,159 viable unbalanced reciprocal translocations.
        Hum. Genet. 1994; 93: 188-194
        • Conn C.M.
        • Harper J.C.
        • Winston R.M.
        • Delhanty J.D.
        Infertile couples with Robertsonian translocations: preimplantation genetic analysis of embryos reveals chaotic cleavage divisions.
        Hum. Genet. 1998; 102: 117-123
      1. Daniel, A., 1988. The Cytogenetics of mammalian autosomal rearrangements.

        • Daniel A.
        Structural differences in reciprocal translocations.
        Potential for a model of risk in Rcp. Hum. Genet. 1979; 51: 171-182
        • Daniel A.
        • Hook E.B.
        • Wulf G.
        Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements: data from United States and Canadian laboratories.
        Am. J. Med. Genet. 1989; 33: 14-53
        • Dawson A.J.
        • Mears A.J.
        • Chudley A.E.
        • Bech-Hansen T.
        • McDermid H.
        Der(22)t(11;22) resulting from a paternal de novo translocation, adjacent 1 segregation, and maternal heterodisomy of chromosome 22.
        J. Med. Genet. 1996; 33: 952-956
        • Dechanet C.
        • Castelli C.
        • Reyftmann L.
        • Hedon B.
        • Dechaud H.
        • Anahory T.
        Do female translocation influence the ovarian response pattern to controlled ovarian stimulation in preimplantation genetic diagnosis?.
        Fertil. Steril. 2011; 96: S259
        • Delhanty J.D.A.
        • Harper J.C.
        • Ao A.
        • Handyside A.H.
        • Winston R.M.L.
        Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients.
        Hum. Genet. 1997; 99: 755-760
        • Edelmann L.
        • Spiteri E.
        • Koren K.
        • Pulijaal V.
        • Bialer M.G.
        • Shanske A.
        • Goldberg R.
        • Morrow B.E.
        AT-Rich Palindromes Mediate the Constitutional t(11;22) Translocation.
        Am. J. Hum. Genet. 2001; 68: 1-13
        • Estop A.M.
        • Cieply K.M.
        • Munne S.
        • Feingold E.
        Multicolor fluorescence in situ hybridization analysis of the spermatozoa of a male heterozygous for a reciprocal translocation t(11;22)(q23;q11).
        Hum. Genet. 1999; 104: 412-417
        • Fraccaro M.
        • Lindsten J.
        • Ford C.E.
        • Iselius L.
        The 11q;22q translocation: a European collaborative analysis of 43 cases.
        Hum. Genet. 1980; 56: 21-51
        • Fragouli E.
        • Alfarawati S.
        • Spath K.
        • Jaroudi S.
        • Sarasa J.
        • Enciso M.
        • Wells D.
        The origin and impact of embryonic aneuploidy.
        Hum. Genet. 2013; 132: 1001-1013
        • Fragouli E.
        • Lenzi M.
        • Ross R.
        • Katz-Jaffe M.
        • Schoolcraft W.B.
        • Wells D.
        Comprehensive molecular cytogenetic analysis of the human blastocyst stage.
        Hum. Reprod. 2008; 23: 2596-2608
        • Fung J.
        • Munné S.
        • Garcia J.
        • Kim U.J.
        • Weier H.U.
        Molecular cloning of translocation breakpoints in a case of constitutional translocation t(11;22)(q23;q11) and preparation of probes for preimplantation genetic diagnosis.
        Reprod. Fertil. Dev. 1999; 11: 17-23
      2. Gardner, R.J.M., Sutherland, G.R., Shaffer, L.G., 2011. Chromosome Abnormalities and Genetic Counseling.

        • Goossens V.
        • Harton G.
        • Moutou C.
        • Traeger-Synodinos J.
        • Van Rij M.
        • Harper J.C.
        ESHRE PGD Consortium data collection IX: cycles from January to December 2006 with pregnancy follow-up to October 2007.
        Hum. Reprod. 2009; 24: 1786-1810
        • Harton G.L.
        • Harper J.C.
        • Coonen E.
        • Pehlivan T.
        • Vesela K.
        • Wilton L.
        • European Society for Human Reproduction and Embryology (ESHRE) PGD Consortium
        ESHRE PGD consortium best practice guidelines for fluorescence in situ hybridization-based PGD.
        Hum. Reprod. 2011; 26: 25-32
        • Iliodromiti S.
        • Kelsey T.W.
        • Wu O.
        • Anderson R.A.
        • Nelson S.M.
        The predictive accuracy of anti-Müllerian hormone for live birth after assisted conception: a systematic review and meta-analysis of the literature.
        Hum. Reprod. Update. 2014; 20: 560-570
        • Iselius L.
        • Lindsten J.
        • Aurias A.
        • Fraccaro M.
        • Bastard C.
        • Bottelli A.M.
        • Bui T.H.
        • Caufin D.
        • Dalprà L.
        • Delendi N.
        The 11q;22q translocation: a collaborative study of 20 new cases and analysis of 110 families.
        Hum. Genet. 1983; 64: 343-355
        • Iwarsson E.
        • Malmgren H.
        • Inzunza J.
        • Ahrlund-Richter L.
        • Sjöblom P.
        • Rosenlund B.
        • Fridström M.
        • Hovatta O.
        • Nordenskjöld M.
        • Blennow E.
        Highly abnormal cleavage divisions in preimplantation embryos from translocation carriers.
        Prenat. Diagn. 2000; 20: 1038-1047
        • Jalbert P.
        • Sele B.
        • Jalbert H.
        Reciprocal translocations: a way to predict the mode of imbalanced segregation by pachytene-diagram drawing.
        Hum. Genet. 1980; 55: 209-222
        • Jayaprakasan K.
        • Campbell B.
        • Hopkisson J.
        • Johnson I.
        • Raine-Fenning N.
        A prospective, comparative analysis of anti-Müllerian hormone, inhibin-B, and three-dimensional ultrasound determinants of ovarian reserve in the prediction of poor response to controlled ovarian stimulation.
        Fertil. Steril. 2010; 93: 855-864
        • Kato T.
        • Kurahashi H.
        • Emanuel B.S.
        Chromosomal translocations and palindromic AT-rich repeats.
        Curr. Opin. Genet. Dev. 2012; 22: 221-228
        • Kulharya A.S.
        • Lovell C.M.
        • Flannery D.B.
        Unusual mosaic karyotype resulting from adjacent 1 segregation of t(11;22): importance of performing skin fibroblast karyotype in patients with unexplained multiple congenital anomalies.
        Am. J. Med. Genet. 2002; 113: 367-370
        • Kurahashi H.
        Long AT-rich palindromes and the constitutional t(11;22) breakpoint.
        Hum. Mol. Genet. 2001; 10: 2605-2617
        • Kurahashi H.
        • Shaikh T.H.
        • Hu P.
        • Roe B.A.
        • Emanuel B.S.
        • Budarf M.L.
        Regions of genomic instability on 22q11 and 11q23 as the etiology for the recurrent constitutional t(11;22).
        Hum. Mol. Genet. 2000; 9: 1665-1670
        • Li Y.
        • Schwab C.
        • Ryan S.
        • Papaemmanuil E.
        • Robinson H.M.
        • Jacobs P.
        • Moorman A.V.
        • Dyer S.
        • Borrow J.
        • Griffiths M.
        • Heerema N.A.
        • Carroll A.J.
        • Talley P.
        • Bown N.
        • Telford N.
        • Ross F.M.
        • Gaunt L.
        • McNally R.J.Q.
        • Young B.D.
        • Sinclair P.
        • Rand V.
        • Teixeira M.R.
        • Joseph O.
        • Robinson B.
        • Maddison M.
        • Dastugue N.
        • Vandenberghe P.
        • Stephens P.J.
        • Cheng J.
        • Van Loo P.
        • Stratton M.R.
        • Campbell P.J.
        • Harrison C.J.
        Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.
        Nature. 2014; 508: 98-102
        • Lockwood D.H.
        • Farrier A.
        • Hecht F.
        • Allanson J.
        Not all chromosome imbalance resulting from the 11q;22q translocation is due to 3:1 segregation in first meiosis.
        Hum. Genet. 1989; 83: 287-288
        • Lurie I.W.
        • Podleschuk L.V.
        11Q;22Q translocation: Third case of imbalance not due to 3:1 nondisjunction in first meiosis.
        Am. J. Med. Genet. 1992; 42 (216–216)
        • Mackie Ogilvie C.
        • Scriven P.N.
        Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos.
        Eur. J. Hum. Genet. 2002; 10: 801-806
        • Mantzouratou A.
        • Delhanty J.D.A.
        Aneuploidy in the human cleavage stage embryo.
        Cytogenet. Genome Res. 2011; 133: 141-148
        • Mertzanidou A.
        • Spits C.
        • Nguyen H.T.
        • Van de Velde H.
        • Sermon K.
        Evolution of aneuploidy up to Day 4 of human preimplantation development.
        Hum. Reprod. 2013; 28: 1716-1724
        • Munné S.
        • Alonso M.L.
        • Grifo J.
        Case report: unusually high rates of aneuploid embryos in a 28-year old woman with incontinentia pigmenti.
        Cytogenet. Genome Res. 1996; 72: 43-45
        • Munné S.
        • Sandalinas M.
        • Escudero T.
        • Fung J.
        • Gianaroli L.
        • Cohen J.
        Outcome of preimplantation genetic diagnosis of translocations.
        Fertil. Steril. 2000; 73: 1209-1218
        • Nardo L.G.
        • Yates A.P.
        • Roberts S.A.
        • Pemberton P.
        • Laing I.
        The relationships between AMH, androgens, insulin resistance and basal ovarian follicular status in non-obese subfertile women with and without polycystic ovary syndrome.
        Hum. Reprod. 2009; 24: 2917-2923
        • Pellestor F.
        • Imbert I.
        • Andréo B.
        • Lefort G.
        Study of the occurrence of interchromosomal effect in spermatozoa of chromosomal rearrangement carriers by fluorescence in-situ hybridization and primed in-situ labelling techniques.
        Hum. Reprod. 2001; 16: 1155-1164
        • Pellestor F.
        • Gatinois V.
        • Puechberty J.
        • Geneviève D.
        • Lefort G.
        Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions.
        A review. Fertil. Steril. 2014; 102: 1785-1796
        • Shaikh T.H.
        • Budarf M.L.
        • Celle L.
        • Zackai E.H.
        • Emanuel B.S.
        Clustered 11q23 and 22q11 breakpoints and 3:1 meiotic malsegregation in multiple unrelated t(11;22) families.
        Am. J. Hum. Genet. 1999; 65: 1595-1607
        • Shpiz A.
        • Ben-Yosef D.
        • Kalma Y.
        Impaired function of trophoblast cells derived from translocated hESCs may explain pregnancy loss in women with balanced translocation (11;22).
        J. Assist. Reprod. Genet. 2016; 33: 1493-1499
        • Simi P.
        • Ceccarelli M.
        • Barachini A.
        • Floridia G.
        • Zuffardi O.
        The unbalanced offspring of the male carriers of the 11q;22q translocation: nondisjunction at meiosis II in a balanced spermatocyte.
        Hum. Genet. 1992; 88: 482-483
        • Soler A.
        • Carrio A.
        • Perez-Vidal M.T.
        • Borrell A.
        • Fortuny A.
        Unusual segregation for 11q;22q parental translocation in a triplet pregnancy: Prenatal diagnosis in chorionic villi and amniotic fluid.
        Prenat. Diagn. 1993; 13: 137-141
      3. Stengel-Rutkowski, S., Gallano, P., Stene, J., 1988. Risk Estimates in Balanced Parental Reciprocal Translocations: Analysis of 1120 Pedigrees.

        • Tachdjian G.
        • Muti C.
        • Gaudelus J.
        • Druart L.
        • Martin B.
        • Tamboise E.
        • Nessmann C.
        Unbalanced karyotype due to adjacent 1 segregation of t(11;22)(q23.3;q13.2).
        Ann. Genet. 1992; 35: 231-233
        • Tapia-Páez I.
        • Kost-Alimova M.
        • Hu P.
        • Roe B.A.
        • Blennow E.
        • Fedorova L.
        • Imreh S.
        • Dumanski J.P.
        The position of t(11;22)(q23;q11) constitutional translocation breakpoint is conserved among its carriers.
        Hum. Genet. 2001; 109: 167-177
        • Torres-Ruiz R.
        • Martinez-Lage M.
        • Martin M.C.
        • Garcia A.
        • Bueno C.
        • Castaño J.
        • Ramirez J.C.
        • Menendez P.
        • Cigudosa J.C.
        • Rodriguez-Perales S.
        Efficient Recreation of t(11;22) EWSR1-FLI1+ in Human Stem Cells Using CRISPR/Cas9.
        Stem Cell Reports. 2017; 8: 1408-1420
        • Van Assche E.
        • Staessen C.
        • Vegetti W.
        • Bonduelle M.
        • Vandervorst M.
        • Van Steirteghem A.
        • Liebaers I.
        Preimplantation genetic diagnosis and sperm analysis by fluorescence in-situ hybridization for the most common reciprocal translocation t(11;22).
        Mol. Hum. Reprod. 1999; 5: 682-690
        • Vanneste E.
        • Voet T.
        • Le Caignec C.
        • Ampe M.
        • Konings P.
        • Melotte C.
        • Debrock S.
        • Amyere M.
        • Vikkula M.
        • Schuit F.
        • Fryns J.-P.
        • Verbeke G.
        • D'Hooghe T.
        • Moreau Y.
        • Vermeesch J.R.
        Chromosome instability is common in human cleavage-stage embryos.
        Nat. Med. 2009; 15: 577-583
        • Verlinsky Y.
        • Kuliev A.
        Preimplantation diagnosis for aneuploidies in assisted reproduction.
        Minerva Ginecol. 2004; 56: 197-203
        • Youings S.
        • Ellis K.
        • Ennis S.
        • Barber J.
        • Jacobs P.
        A study of reciprocal translocations and inversions detected by light microscopy with special reference to origin, segregation, and recurrent abnormalities.
        Am. J. Med. Genet. 2004; 126A: 46-60
        • Zackai E.H.
        • Emanuel B.S.
        • Optiz J.M.
        Site-specific reciprocal translocation, t(11;22) (q23;q11), in several unrelated families with 3:1 meiotic disjunction.
        Am. J. Med. Genet. 1980; 7: 507-521
        • Zhang N.
        • Hao C.-F.
        • Zhuang L.-L.
        • Liu X.-Y.
        • Gu H.F.
        • Liu S.
        • Chen Z.-J.
        Prediction of IVF/ICSI outcome based on the follicular output rate.
        Reprod. Biomed. Online. 2013; 27: 147-153

      Biography

      Reda Zenagui received his PhD in Molecular Biology from the University of Montpellier, France in 2011. He specializes in monogenic disorders. He is now part of the Pre-implantation Genetic Diagnostic Unit at Montpellier Hospital, focusing on improving reproductive care in patients with chromosomal abnormalities.
      Key message
      This study ascertained that the adjacent-1 segregation mode was the predominant imbalance in spermatozoa and embryos. However, the adjacent-1 products undergo post-zygotic selection responsible for their elimination. Therefore, post-zygotic selection would favour a viable offspring derived from the 3:1 segregation mode.