Highlights
- •Forty-eight per cent of pregnancy loss tissue contains chromosomal abnormalities.
- •The percentage and type of abnormality detected varies per testing technique.
- •The percentage of abnormalities is similar in sporadic and recurrent pregnancy loss.
- •Detecting specific chromosomal abnormalities in such tissue has no clinical benefit.
Abstract
Keywords
Introduction
ESHRE Early Pregnancy Guideline Development Group, 2017. Recurrent Pregnancy Loss.https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss
ESHRE Early Pregnancy Guideline Development Group, 2017. Recurrent Pregnancy Loss.https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss
ESHRE Early Pregnancy Guideline Development Group, 2017. Recurrent Pregnancy Loss.https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss
ESHRE Early Pregnancy Guideline Development Group, 2017. Recurrent Pregnancy Loss.https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss
Materials and methods
Selection of studies
Outcomes
- Carvalho B.
- Doria S.
- Ramalho C.
- Brandao O.
- Sousa M.
- Matias A.
- Barros A.
- Carvalho F.
Data analysis
Results
Conventional karyotyping
Study | Total number of samples | Failures | Successful tested | Trisomy | Polyploidy | Monosomy X | Structural abnormalities | Others | Mean age | Mean GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Abnormal | Clinically relevant | Clinically irrelevant/unknown | |||||||||
n | n (%) | n (%) | n (%) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | |||
Soler et al., 2017 | 1119 | 108 (10) | 300 (30) | 711 (70) | 459 (65) | 103 (14) | 74 (10) | 37 (5) | 35 (5) | 3 (0) | NR | 1st trimester |
Pylyp et al., 2018 | 1000 | 0 (0) | 499 (50) | 501 (50) | 290 (58) | 110 (22) | 38 (8) | 35 (7) | 25 (5) | 3 (1) | 33.7 | 7.9 |
Zhu et al., 2016 | 12 | 1 (8) | 7 (64) | 4 (36) | 3 (75) | 1 (25) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | NR | 27.8 |
Zhou et al., 2016 | 1180 | 179 (15) | 513 (51) | 488 (49) | 291 (60) | 88 (18) | 63 (13) | 24 (5) | 20 (4) | 2 (0) | 36.6 | NR |
Lin et al., 2015 | 155 | 22 (14) | 49 (37) | 84 (63) | NR | NR | NR | NR | NR | NR | 32.2 | 9.6 |
Wang et al., 2014
Abnormalities in spontaneous abortions detected by g-banding and chromosomal microarray analysis (CMA) at a national reference laboratory. Molecular cytogenetics. 2014; 7: 33 | 5457 | 1365 (25) | 2220 (54) | 1872 (46) | 1236 (66) | 337 (18) | 243 (13) | 37 (2) | 19 (1) | 0 (0) | NR | NR |
Jenderny, 2014 | 534 | 144 (27) | 153 (39) | 237 (61) | 111 (47) | 54 (23) | 16 (7) | 10 (4) | 46 (19) | 0 (0) | NR | <34 |
Chang et al., 2013 | 100 | 34 (34) | 46 (70) | 20 (30) | 11 (55) | 3 (15) | 3 (15) | 1 (5) | 0 (0) | 2 (10) | 33.2 | 8 |
Gao et al., 2012
Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion. Molecular cytogenetics. 2012; 5: 33 | 100 | 14 (14) | 39 (45) | 47 (55) | 40 (85) | 3 (6) | 2 (4) | 1 (2) | 1 (2) | 0 (0) | 32 | 1st trimester |
Lathi et al., 2012 | 30 | 0 (0) | 10 (33) | 20 (67) | 16 (80) | 2 (10) | 0 (0) | 2 (10) | 0 (0) | 0 (0) | 37.2 | 8.8 |
Shearer et al., 2011
Reflex fluorescent in situ hybridization testing for unsuccessful product of conception cultures: A retrospective analysis of 5555 samples attempted by conventional cytogenetics and fluorescent in situ hybridization. Genetics in medicine: official journal of the American College of Medical Genetics. 2011; 13: 545-552 | 5555 | 1033 (19) | 2686 (59) | 1836 (41) | 1074 (58) | 278 (15) | 260 (14) | 135 (7) | 89 (5) | 0 (0) | NR | NR |
Carvalho et al., 2010
Aneuploidies detection in miscarriages and fetal deaths using multiplex ligation-dependent probe amplification: An alternative for speeding up results?. European journal of obstetrics, gynecology, and reproductive biology. 2010; 153: 151-155 | 489 | 161 (33) | 243 (74) | 85 (26) | 47 (55) | 19 (22) | 8 (9) | 5 (6) | 1 (1) | 5 (6) | 30 | 21.5 |
Deshpande et al., 2010
Evaluation of array comparative genomic hybridization for genetic analysis of chorionic villus sampling from pregnancy loss in comparison to karyotyping and multiplex ligation-dependent probe amplification. Genetic testing and molecular biomarkers. 2010; 14: 421-424 | 20 | 0 (0) | 12 (60) | 8 (40) | 2 (25) | 0 (0) | 1 (13) | 3 (38) | 2 (25) | 0 (0) | NR | NR |
Robberecht et al., 2009 | 103 | 26 (25) | 55 (71) | 22 (29) | 10 (45) | 5 (23) | 6 (27) | 1 (5) | 0 (0) | 0 (0) | NR | NR |
Menten et al., 2009 | 100 | 28 (28) | 55 (76) | 17 (24) | 10 (59) | 3 (18) | 2 (12) | 2 (12) | 0 (0) | 0 (0) | NR | NR |
Zhang et al., 2009 | 115 | 23 (20) | 37 (40) | 55 (60) | 36 (65) | 8 (15) | 5 (9) | 2 (4) | 4 (7) | 0 (0) | NR | NR |
Doria et al., 2009
An efficient protocol for the detection of chromosomal abnormalities in spontaneous miscarriages or foetal deaths. European journal of obstetrics, gynecology, and reproductive biology. 2009; 147: 144-150 | 232 | 59 (25) | 107 (62) | 66 (38) | 36 (55) | 13 (20) | 6 (9) | 5 (8) | 15 (23) | 0 (0) | 32.1 | All trimesters |
Diego-Alvarez et al., 2005
Application of quantitative fluorescent PCR with short tandem repeat markers to the study of aneuploidies in spontaneous miscarriages. Human reproduction (Oxford, England). 2005; 20: 1235-1243 | 221 | 119 (54) | 62 (61) | 40 (39) | 24 (60) | 5 (13) | 6 (15) | 1 (3) | 4 (10) | 0 (0) | NR | 6–24 |
Bruno et al., 2006
High-throughput analysis of chromosome abnormality in spontaneous miscarriage using an mlpa subtelomere assay with an ancillary fish test for polyploidy. American journal of medical genetics. Part A. 2006; 140: 2786-2793 | 78 | 11 (14) | 38 (57) | 29 (43) | 17 (59) | 3 (10) | 2 (7) | 7 (24) | 0 (0) | 0 (0) | NR | 22 |
Hu et al., 2006 | 38 | 7 (18) | 15 (48) | 16 (52) | 12 (75) | 2 (13) | 2 (13) | 0 (0) | 0 (0) | 0 (0) | 22–47 | 7–13 |
Halder and Fauzdar, 2006 | 33 | 18 (55) | 12 (80) | 3 (20) | 1 (33) | 1 (33) | 0 (0) | 0 (0) | 1 (33) | 0 (0) | NR | NR |
Schaeffer et al., 2004 | 41 | 0 (0) | 25 (61) | 16 (39) | 13 (81) | 1 (6) | 1 (6) | 1 (6) | 0 (0) | 0 (0) | NR | NR |
Sullivan et al., 2004 | 285 | 30 (11) | 168 (66) | 87 (34) | 56 (64) | 18 (21) | 8 (9) | 4 (5) | 0 (0) | 0 (0) | 31 | NR |
Jobanputra et al., 2002 | 57 | 5 (9) | 22 (42) | 30 (58) | 17 (57) | 6 (20) | 2 (7) | 0 (0) | 5 (17) | 0 (0) | NR | <9 |
Stephenson et al., 2002 | 472 | 52 (11) | 225 (54) | 195 (46) | 121 (62) | 37 (19) | 18 (9) | 8 (4) | 10 (5) | 1 (1) | 34.3 | <20 |
Tabet et al., 2001 | 21 | 0 (0) | 10 (48) | 11 (52) | 6 (55) | 1 (9) | 1 (9) | 3 (27) | 0 (0) | 0 (0) | NR | NR |
Carp et al., 2001 | 167 | 42 (25) | 89 (71) | 36 (29) | 24 (67) | 5 (14) | 5 (14) | 2 (6) | 0 (0) | 0 (0) | 31.6 | <20 |
Lomax et al., 2000 | 301 | 48 (16) | 98 (39) | 155 (61) | 111 (72) | 25 (16) | 12 (8) | 7 (5) | 0 (0) | 0 (0) | Mostly advanced maternal age | |
Ogasawara et al., 2000 | 458 | 224 (49) | 114 (49) | 120 (51) | 63 (53) | 18 (15) | 5 (4) | 0 (0) | 34 (28) | NR | 29.4–34.4 | NR |
Estimated proportion | 16 | 55 | 47 | 62 | 16 | 8 | 4 | 3 | 0 | |||
95% CI | 12–21 | 48–62 | 43–51 | 59–66 | 14–17 | 7–10 | 3–6 | 1–6 | 0–0 |
Array-comparative genomic hybridization (aCGH)
Study | Total number of samples | Failures | Successful tested | Trisomy | Polyploidy | Monosomy X | Structural abnormalities | Others | Mean age | Mean GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Abnormal | Clinically relevant | Clinically irrelevant/unknown | |||||||||
n | n (%) | n (%) | n (%) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | |||
Li et al., 2017 | 2172 | 0 (0) | 1196 (55) | 976 (45) | 796 (82) | 8 (1) | 116 (12) | 4 (0) | 50 (5) | 2 (0) | 32.2 | NR |
Gliem and Aypar, 2017 | 25 | 0 (0) | 4 (16) | 21 (84) | 12 (57) | 5 (24) | 2 (10) | 0 (0) | 2 (10) | 0 (0) | NR | NR |
Chen et al., 2017 | 98 | 0 (0) | 49 (50) | 49 (50) | 36 (73) | 0 (0) | 9 (18) | 3 (6) | 1 (2) | 0 (0) | 31.6 | 10.2 |
Ozawa et al., 2016 | 15 | 0 (0) | 5 (33) | 10 (67) | 7 (70) | 0 (0) | 0 (0) | 1 (10) | 2 (20) | 0 (0) | 35.7 | 7.9 |
Shen et al., 2016 | 256 | 0 (0) | 125 (49) | 131 (51) | 115 (88) | 9 (7) | 0 (0) | 7 (5) | 0 (0) | 0 (0) | 30.8 | NR |
Rosenfeld et al., 2015
Diagnostic utility of microarray testing in pregnancy loss. Ultrasound in obstetrics and gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2015; 46: 478-486 | 535 | 20 (4) | 425 (83) | 90 (17) | 21 (23) | 1 (1) | 6 (7) | 29 (32) | 33 (37) | 0 (0) | NR | All trimesters |
Kudesia et al., 2014 | 20 | 4 (20) | 8 (50) | 8 (50) | 3 (38) | 0 (0) | 0 (0) | 2 (25) | 1 (13) | 2 (25) | 33 | 8 |
Robberecht et al., 2012 | 51 | 19 (37) | 11 (34) | 21 (66) | 9 (43) | 7 (33) | 4 (19) | 1 (5) | 0 (0) | 0 (0) | 31.7 | 7.5 |
Gao et al., 2012
Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion. Molecular cytogenetics. 2012; 5: 33 | 100 | 0 (0) | 43 (43) | 57 (57) | 48 (84) | 0 (0) | 4 (7) | 3 (5) | 2 (4) | 0 (0) | 32 | NR |
Deshpande et al., 2010
Evaluation of array comparative genomic hybridization for genetic analysis of chorionic villus sampling from pregnancy loss in comparison to karyotyping and multiplex ligation-dependent probe amplification. Genetic testing and molecular biomarkers. 2010; 14: 421-424 | 20 | 0 (0) | 12 (60) | 8 (40) | 3 (38) | 0 (0) | 0 (0) | 3 (38) | 2 (25) | 0 (0) | NR | NR |
Zhang et al., 2009 | 21 | 0 (0) | 8 (38) | 13 (62) | 6 (46) | 0 (0) | 2 (15) | 5 (38) | 0 (0) | 0 (0) | NR | NR |
Robberecht et al., 2009 | 103 | 12 (12) | 65 (71) | 26 (29) | 13 (50) | 0 (0) | 8 (31) | 0 (0) | 2 (8) | 3 (12) | NR | NR |
Menten et al., 2009 | 100 | 2 (2) | 72 (73) | 26 (27) | 15 (58) | 3 (12) | 5 (19) | 3 (12) | 0 (0) | 0 (0) | NR | NR |
Benkhalifa et al., 2005 | 26 | 0 (0) | 11 (42) | 15 (58) | 4 (27) | 0 (0) | 1 (7) | 2 (13) | 7 (47) | 1 (7) | NR | 9–11 |
Schaeffer et al., 2004 | 41 | 0 (0) | 24 (59) | 17 (41) | 10 (59) | 0 (0) | 1 (6) | 2 (12) | 3 (18) | 1 (6) | NR | NR |
Estimated proportion | 2 | 52 | 48 | 58 | 2 | 10 | 9 | 9 | 0 | |||
95% CI | 0–5 | 43–61 | 39–57 | 44–71 | 0–5 | 7–14 | 3–18 | 3–17 | 0–1 |
- Rosenfeld J.A.
- Tucker M.E.
- Escobar L.F.
- Neill N.J.
- Torchia B.S.
- Mcdaniel L.D.
- Schultz R.A.
- Chong K.
- Chitayat D.
- Rosenfeld J.A.
- Tucker M.E.
- Escobar L.F.
- Neill N.J.
- Torchia B.S.
- Mcdaniel L.D.
- Schultz R.A.
- Chong K.
- Chitayat D.
SNP array
Study | Total number of samples | Failures | Successful tested | Trisomy | Polyploidy | Monosomy X | Structural abnormalities | Others | Mean age | Mean GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Abnormal | Clinically relevant | Clinically irrelevant/unknown | |||||||||
n | n (%) | n (%) | n (%) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | |||
Qu et al., 2019
Exploring the cause of early miscarriage with SNP-array analysis and karyotyping. The journal of maternal-fetal and neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2019; 32: 1-10 | 484 | 16 (3) | 178 (38) | 290 (62) | 150 (52) | 35 (12) | 42 (14) | 21 (7) | 26 (9) | 16 (6) | 29.7 | 9.4 |
Li et al., 2018 | 1493 | 0 (0) | 550 (37) | 943 (63) | 597 (63) | 63 (7) | 52 (6) | 72 (8) | 159 (17) | 0 (0) | 32.1 | NR |
Wang et al., 2017 | 551 | 16 (3) | 225 (42) | 310 (58) | 164 (53) | 40 (13) | 35 (11) | 31 (10) | 25 (8) | 15 (5) | 30.7 | 9.8 |
Zhang et al., 2016 | 60 | 0 (0) | 37 (62) | 23 (38) | 8 (35) | 2 (9) | 3 (13) | 3 (13) | 4 (17) | 3 (13) | 29.9 | 17.2 |
Zhu et al., 2016 | 83 | 3 (4) | 38 (53) | 42 (48) | 27 (64) | 4 (10) | 4 (10) | 7 (17) | 0 (0) | 0 (0) | NR | 27.8 |
Maslow et al., 2015 | 62 | 18 (29) | 19 (43) | 25 (57) | 18 (72) | 1 (4) | 4 (16) | 0 (0) | 1 (4) | 1 (4) | 34.2 | 1st trimester |
Lin et al., 2015 | 155 | 3 (2) | 55 (36) | 97 (64) | 63 (65) | 6 (6) | 11 (11) | 3 (3) | 14 (14) | 0 (0) | 32.2 | 9.6 |
Levy et al., 2014 | 2392 | 531 (22) | 715 (38) | 1146 (62) | 794 (70) | 118 (10) | 53 (5) | 50 (4) | 110 (10) | 21 (2) | 36.2 | 7.7 |
Li et al., 2013 | 81 | 0 (0) | 25 (31) | 56 (69) | 35 (63) | 3 (5) | 2 (4) | 12 (21) | 4 (7) | 0 (0) | 34.2 | NR |
Lathi et al., 2012 | 30 | 1 (3) | 11 (38) | 18 (62) | 14 (78) | 1 (6) | 0 (0) | 1 (6) | 2 (11) | 0 (0) | 37.2 | NR |
Estimated proportion | 4 | 40 | 60 | 61 | 9 | 8 | 7 | 9 | 1 | |||
95% CI | 0–13 | 37–43 | 58–63 | 55–67 | 7–11 | 5–11 | 5–10 | 6–13 | 0–4 |
- Qu S.
- Wang L.
- Cai A.
- Cui S.
- Bai N.
- Liu N.
- Kong X.
FISH
Study | Total number of samples | Failures | Successful tested | Trisomy | Polyploidy | Monosomy X | Structural abnormalities | Others | Mean age | Mean GA | Chromosome probes used | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Abnormal | Clinically relevant | Clinically irrelevant/unknown | ||||||||||
n | n (%) | n (%) | n (%) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | |||||
Gliem and Aypar, 2017 | 25 | 0 (0) | 5 (20) | 20 (80) | 12 (60) | 6 (30) | 2 (10) | 0 (0) | 0 (0) | 0 (0) | NR | NR | 13, 15, 16, 18, 21, 22, X, Y |
Russo et al., 2016 | 855 | 0 (0) | 425 (50) | 430 (50) | 258 (60) | 100 (23) | 60 (14) | 0 (0) | 7 (2) | 5 (1) | 34.7 | NR | 13, 15, 16, 18, 21, 22, X, Y |
An et al., 2015 | 144 | 0 (0) | 93 (65) | 51 (35) | 28 (55) | 8 (16) | 12 (24) | 0 (0) | 3 (6) | 0 (0) | 31 | 6–12 | 13, 16, 18, 21, 22, X, Y |
Jia et al., 2015 | 832 | 0 (0) | 464 (56) | 368 (44) | 229 (62) | 58 (16) | 57 (15) | 0 (0) | 20 (5) | 4 (1) | NR | NR | 13, 16, 18, 21, 22, X, Y |
Haoud et al., 2014 | 151 | 26 (21) | 115 (92) | 10 (8) | 5 (50) | 3 (30) | 1 (10) | 0 (0) | 1 (10) | 0 (0) | NR | All trimesters | 13, 18, 21, X, Y |
Chang et al., 2013 | 101 | 0 (0) | 54 (53) | 47 (47) | 32 (68) | 10 (21) | 5 (11) | 0 (0) | 0 (0) | 0 (0) | 33.2 | 8 | 13, 16, 18, 21, 22, X, Y |
Gao et al., 2012
Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion. Molecular cytogenetics. 2012; 5: 33 | 100 | 0 (0) | 58 (58) | 42 (42) | 31 (74) | 4 (10) | 4 (10) | 0 (0) | 3 (7) | 0 (0) | 32 | NR | 13, 16, 18, 21, 22, X, Y |
Shearer et al., 2011
Reflex fluorescent in situ hybridization testing for unsuccessful product of conception cultures: A retrospective analysis of 5555 samples attempted by conventional cytogenetics and fluorescent in situ hybridization. Genetics in medicine: official journal of the American College of Medical Genetics. 2011; 13: 545-552 | 943 | 63 (7) | 676 (77) | 204 (23) | 108 (53) | 48 (24) | 43 (21) | 0 (0) | 5 (2) | 0 (0) | NR | NR | 13, 16, 18, 21, 22, X, Y |
Jobanputra et al., 2011 | 109 | 0 (0) | 86 (79) | 23 (21) | 13 (57) | 4 (17) | 2 (9) | 0 (0) | 4 (17) | 0 (0) | 34.4 | NR | 13, 15, 16, 18, 21, 22, X, Y |
Lebedev et al., 2004 | 60 | 0 (0) | 28 (47) | 32 (53) | 16 (50) | 6 (19) | 0 (0) | 0 (0) | 9 (28) | 1 (3) | NR | 5–12 | 1,5, 13–16, 18, 19, 21, 22, X, Y |
Estimated proportion | 1 | 62 | 38 | 60 | 19 | 13 | 0 | 5 | 0 | ||||
95% CI | 0–4 | 51–72 | 28–49 | 56–64 | 16–23 | 9–17 | 0–0 | 2–8 | 0–0 |
Multiplex ligation-dependent probe amplification (MLPA)
Study | Total number of samples | Failures | Successful tested | Trisomy | Polyploidy | Monosomy X | Structural abnormalities | Others | Mean age | Mean GA | MLPA kit used | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Abnormal | Clinically relevant | Clinically irrelevant/unknown | ||||||||||
n | n (%) | n (%) | n (%) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | n (% of abnormal) | |||||
Chen et al., 2017 | 98 | 0 (0) | 49 (50) | 49 (50) | 36 (73) | 0 (0) | 9 (18) | 3 (6) | 1 (2) | 0 (0) | 31.6 | 10.2 | Aneuploidy (24 chromosomes) |
Zimowski et al., 2016 | 181 | 5 (3) | 103 (59) | 73 (41) | 40 (55) | 3 (4) | 14 (19) | 13 (18) | 3 (4) | 0 (0) | 33.3 | 9 | Subtelomeric and subcentromeric probe kits |
Saxena et al., 2016 | 90 | 23 (26) | 55 (82) | 12 (18) | 6 (50) | 0 (0) | 2 (17) | 3 (25) | 1 (8) | 0 (0) | 30.7 | 9.8 | Subtelomeric probe kits |
Tekcan et al., 2015 | 43 | 12 (28) | 19 (61) | 12 (39) | 3 (25) | 5 (42) | 2 (17) | 2 (17) | 0 (0) | 0 (0) | 33.6 | 9.2 | Subtelomeric probe kits |
Haoud et al., 2014 | 63 | 6 (10) | 55 (96) | 2 (4) | 0 (0) | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 0 (0) | NR | NR | Subtelomeric regions and targeted locus probe kits |
Carvalho et al., 2010
Aneuploidies detection in miscarriages and fetal deaths using multiplex ligation-dependent probe amplification: An alternative for speeding up results?. European journal of obstetrics, gynecology, and reproductive biology. 2010; 153: 151-155 | 489 | 0 (0) | 451 (92) | 38 (8) | 21 (55) | 4 (11) | 11 (29) | 0 (0) | 1 (3) | 1 (3) | 30 | 21.5 | Aneuploidy (chromosomes 13, 18, 21, X, Y) |
Deshpande et al., 2010
Evaluation of array comparative genomic hybridization for genetic analysis of chorionic villus sampling from pregnancy loss in comparison to karyotyping and multiplex ligation-dependent probe amplification. Genetic testing and molecular biomarkers. 2010; 14: 421-424 | 20 | 0 (0) | 16 (80) | 4 (20) | 3 (75) | 0 (0) | 0 (0) | 0 (0) | 1 (25) | 0 (0) | NR | NR | Subtelomeric probe kits |
Bruno et al., 2006
High-throughput analysis of chromosome abnormality in spontaneous miscarriage using an mlpa subtelomere assay with an ancillary fish test for polyploidy. American journal of medical genetics. Part A. 2006; 140: 2786-2793 | 78 | 4 (5) | 46 (62) | 28 (38) | 20 (71) | 0 (0) | 2 (7) | 5 (18) | 1 (4) | 0 (0) | NR | 22 | Subtelomeric probe kits |
Estimated proportion | 5 | 75 | 25 | 62 | 2 | 16 | 7 | 1 | 0 | ||||
95% CI | 0–14 | 58–88 | 12–42 | 46–76 | 0–9 | 8–26 | 1–17 | 0–3 | 0–0 |
- Carvalho B.
- Doria S.
- Ramalho C.
- Brandao O.
- Sousa M.
- Matias A.
- Barros A.
- Carvalho F.
- Bruno D.L.
- Burgess T.
- Ren H.
- Nouri S.
- Pertile M.D.
- Francis D.I.
- Norris F.
- Kenney B.K.
- Schouten J.
- Andy Choo K.H.
- Slater H.R.
- Bruno D.L.
- Burgess T.
- Ren H.
- Nouri S.
- Pertile M.D.
- Francis D.I.
- Norris F.
- Kenney B.K.
- Schouten J.
- Andy Choo K.H.
- Slater H.R.
- Carvalho B.
- Doria S.
- Ramalho C.
- Brandao O.
- Sousa M.
- Matias A.
- Barros A.
- Carvalho F.
Recurrent versus sporadic pregnancy loss

Discussion
- Gao J.
- Liu C.
- Yao F.
- Hao N.
- Zhou J.
- Zhou Q.
- Zhang L.
- Liu X.
- Bian X.
- Liu J.
ESHRE Early Pregnancy Guideline Development Group, 2017. Recurrent Pregnancy Loss.https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss
- Coomarasamy A.
- Devall A.J.
- Cheed V.
- Harb H.
- Middleton L.J.
- Gallos I.D.
- Williams H.
- Eapen A.K.
- Roberts T.
- Ogwulu C.C.
- Goranitis I.
- Daniels J.P.
- Ahmed A.
- Bender-Atik R.
- Bhatia K.
- Bottomley C.
- Brewin J.
- Choudhary M.
- Crosfill F.
- Deb S.
- Duncan W.C.
- Ewer A.
- Hinshaw K.
- Holland T.
- Izzat F.
- Johns J.
- Kriedt K.
- Lumsden M.A.
- Manda P.
- Norman J.E.
- Nunes N.
- Overton C.E.
- Quenby S.
- Rao S.
- Ross J.
- Shahid A.
- Underwood M.
- Vaithilingam N.
- Watkins L.
- Wykes C.
- Horne A.
- Jurkovic D.
- Franssen M.T.
- Korevaar J.C.
- Leschot N.J.
- Bossuyt P.M.
- Knegt A.C.
- Gerssen-Schoorl K.B.
- Wouters C.H.
- Hansson K.B.
- Hochstenbach R.
- Madan K.
- Van Der Veen F.
- Goddijn M.
References
- Result and pedigree analysis of spontaneously abortion villus chromosome detecting by fish.Genetics and molecular research: GMR. 2015; 14: 16662-16666
- The gestational timing of pregnancy loss: Adaptive strategy?.American journal of human biology: the official journal of the Human Biology Council. 2009; 21: 725-727
- ESHRE guideline: Recurrent pregnancy loss.Human Reproduction Open. 2018; (2018. hoy004-hoy004)
- Array comparative genomic hybridization profiling of first-trimester spontaneous abortions that fail to grow in vitro.Prenatal diagnosis. 2005; 25: 894-900
- High-throughput analysis of chromosome abnormality in spontaneous miscarriage using an mlpa subtelomere assay with an ancillary fish test for polyploidy.American journal of medical genetics. Part A. 2006; 140: 2786-2793
- Karyotype of the abortus in recurrent miscarriage.Fertility and sterility. 2001; 75: 678-682
- Aneuploidies detection in miscarriages and fetal deaths using multiplex ligation-dependent probe amplification: An alternative for speeding up results?.European journal of obstetrics, gynecology, and reproductive biology. 2010; 153: 151-155
- Comparative study of fluorescence in situ hybridization analysis and karyotype analysis in spontaneous abortion etiology diagnosis, journal of reproduction and contraception.Journal of Reproduction and Contraception. 2013; 24: 10
- A copy number variation genotyping method for aneuploidy detection in spontaneous abortion specimens.Prenatal diagnosis. 2017; 37: 176-183
- A randomized trial of progesterone in women with bleeding in early pregnancy.The New England journal of medicine. 2019; 380: 1815-1824
- The emotional burden of miscarriage for women and their partners: Trajectories of anxiety and depression over 13 months.BJOG: an international journal of obstetrics and gynaecology. 2007; 114: 1138-1145
- Evaluation of array comparative genomic hybridization for genetic analysis of chorionic villus sampling from pregnancy loss in comparison to karyotyping and multiplex ligation-dependent probe amplification.Genetic testing and molecular biomarkers. 2010; 14: 421-424
- Application of quantitative fluorescent PCR with short tandem repeat markers to the study of aneuploidies in spontaneous miscarriages.Human reproduction (Oxford, England). 2005; 20: 1235-1243
- An efficient protocol for the detection of chromosomal abnormalities in spontaneous miscarriages or foetal deaths.European journal of obstetrics, gynecology, and reproductive biology. 2009; 147: 144-150
ESHRE Early Pregnancy Guideline Development Group, 2017. Recurrent Pregnancy Loss.https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss
- Pregnancy loss among pregnancies conceived through assisted reproductive technology, united states, 1999–2002.American journal of epidemiology. 2007; 165: 1380-1388
- Recurrent pregnancy loss: Etiology, diagnosis, and therapy.Reviews in Obstetrics and Gynecology. 2009; 2: 76-83
- Selective chromosome analysis in couples with two or more miscarriages: Case-control study.BMJ (Clinical research ed.). 2005; 331: 137-141
- Reproductive outcome after PGD in couples with recurrent miscarriage carrying a structural chromosome abnormality: A systematic review.Human reproduction update. 2011; 17: 467-475
- Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion.Molecular cytogenetics. 2012; 5: 33
- Development of a chromosomal microarray test for the detection of abnormalities in formalin-fixed, paraffin-embedded products of conception specimens.The Journal of molecular diagnostics: JMD. 2017; 19: 843-847
- Genetic aspects of miscarriage. Bailliere's best practice and research.Clinical obstetrics and gynaecology. 2000; 14: 855-865
- Skewed sex ratio and low aneuploidy in recurrent early missed abortion.The Indian journal of medical research. 2006; 124: 41-50
- Prevalence of aneuploidies in products of spontaneous abortion: Interest of fish and mlpa.Morphologie: bulletin de l'Association des anatomistes. 2014; 98: 40-46
- To err (meiotically) is human: The genesis of human aneuploidy. Nature reviews.Genetics. 2001; 2: 280-291
- Management of recurrent pregnancy loss associated with a parental carrier of a reciprocal translocation: A systematic review.Seminars in reproductive medicine. 2011; 29: 470-481
- Comparative genomic hybridization analysis of spontaneous abortion.International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2006; 92: 52-57
- Chromosome aberrations in a large series of spontaneous miscarriages in the German population and review of the literature.Molecular cytogenetics. 2014; 7: 38
- Aneuploidy in early miscarriage and its related factors.Chinese Medical Journal. 2015; 128: 2772-2776
- Multiplex interphase fish as a screen for common aneuploidies in spontaneous abortions.Human reproduction (Oxford, England). 2002; 17: 1166-1170
- Using fish to increase the yield and accuracy of karyotypes from spontaneous abortion specimens.Prenatal diagnosis. 2011; 31: 755-759
- Rescue karyotyping: A case series of array-based comparative genomic hybridization evaluation of archival conceptual tissue.Reproductive biology and endocrinology: RB and E. 2014; 12: 19
- Aneuploidy in abortuses following IVF and ICSI.Journal of Assisted Reproduction and Genetics. 2009; 26: 93-97
- Informatics enhanced SNP microarray analysis of 30 miscarriage samples compared to routine cytogenetics.PloS one. 2012; 7: e31282
- Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase fish analysis.European journal of human genetics: EJHG. 2004; 12: 513-520
- Genomic imbalance in products of conception: Single-nucleotide polymorphism chromosomal microarray analysis.Obstetrics and gynecology. 2014; 124: 202-209
- Molecular karyotype single nucleotide polymorphism analysis of early fetal demise.Systems Biology in Reproductive Medicine. 2013; 59: 227-231
- Effect of assisted reproductive technology on the molecular karyotype of missed abortion tissues.Bioscience Reports. 2018; 38
- Correlation analysis between ultrasound findings and abnormal karyotypes in the embryos from early pregnancy loss after in vitro fertilization-embryo transfer.Journal of assisted reproduction and genetics. 2017; 34: 43-50
- Improved assay performance of single nucleotide polymorphism array over conventional karyotyping in analyzing products of conception.Journal of the Chinese Medical Association: JCMA. 2015; 78: 408-413
- Comparative genomic hybridization in combination with flow cytometry improves results of cytogenetic analysis of spontaneous abortions.American journal of human genetics. 2000; 66: 1516-1521
- Single-nucleotide polymorphism-microarray ploidy analysis of paraffin-embedded products of conception in recurrent pregnancy loss evaluations.Obstetrics and gynecology. 2015; 126: 175-181
- Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples.BMC medical genetics. 2009; 10: 89
- Maternal age and fetal loss: Population based register linkage study.BMJ (Clinical research ed.). 2000; 320: 1708-1712
- Embryonic karyotype of abortuses in relation to the number of previous miscarriages.Fertility and sterility. 2000; 73: 300-304
- Cytogenetic analysis of spontaneously discharged products of conception by array-based comparative genomic hybridization.SpringerPlus. 2016; 5: 874
- Evaluation and treatment of recurrent pregnancy loss: a committee opinion.Fertil Steril. 2012; 98: 1103-1111
- Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: A review of 1000 cases.Journal of assisted reproduction and genetics. 2018; 35: 265-271
- Exploring the cause of early miscarriage with SNP-array analysis and karyotyping.The journal of maternal-fetal and neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2019; 32: 1-10
- Recurrent miscarriage.Lancet (London, England). 2006; 368: 601-611
- Diagnosis of miscarriages by molecular karyotyping: Benefits and pitfalls.Genetics in medicine: official journal of the American College of Medical Genetics. 2009; 11: 646-654
- Cytogenetic and morphological analysis of early products of conception following hystero-embryoscopy from couples with recurrent pregnancy loss.Prenatal diagnosis. 2012; 32: 933-942
- Diagnostic utility of microarray testing in pregnancy loss.Ultrasound in obstetrics and gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2015; 46: 478-486
- The Investigation and Treatment of Couples with Recurrent First-trimester and Second-trimester Miscarriage.Green-top Guideline No. 2011; 17: 1-17
- Chromosomal anomalies in early spontaneous abortions: Interphase fish analysis on 855 ffpe first trimester abortions.Prenatal diagnosis. 2016; 36: 186-191
- Utility and limitations of multiplex ligation-dependent probe amplification technique in the detection of cytogenetic abnormalities in products of conception.Journal of postgraduate medicine. 2016; 62: 239-241
- Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages.American journal of human genetics. 2004; 74: 1168-1174
- Reflex fluorescent in situ hybridization testing for unsuccessful product of conception cultures: A retrospective analysis of 5555 samples attempted by conventional cytogenetics and fluorescent in situ hybridization.Genetics in medicine: official journal of the American College of Medical Genetics. 2011; 13: 545-552
- Chromosomal copy number analysis on chorionic villus samples from early spontaneous miscarriages by high throughput genetic technology.Molecular cytogenetics. 2016; 9: 7
- Overview of chromosome abnormalities in first trimester miscarriages: A series of 1,011 consecutive chorionic villi sample karyotypes.Cytogenetic and genome research. 2017; 152: 81-89
- Relationship between maternal age and aneuploidy in in vitro fertilization pregnancy loss.Fertility and Sterility. 2004; 81: 1265-1269
- Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: A case-control study.Human reproduction (Oxford, England). 2002; 17: 446-451
- Recurrent fetal aneuploidy and recurrent miscarriage.Obstetrics and gynecology. 2004; 104: 784-788
- Cytogenetic analysis of trophoblasts by comparative genomic hybridization in embryo-fetal development anomalies.Prenatal diagnosis. 2001; 21: 613-618
- Effects of subtelomeric copy number variations in miscarriages.Gynecological endocrinology: the official journal of the International Society of Gynecological Endocrinology. 2015; 31: 708-714
- Association between thyroid autoantibodies and miscarriage and preterm birth: Meta-analysis of evidence.BMJ (Clinical research ed.). 2011; 342: d2616
- Genetics of early miscarriage.Biochimica et biophysica acta. 2012; 1822: 1951-1959
- Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: A systematic review.Human reproduction update. 2011; 17: 605-619
- Economic analysis of chromosome testing in couples with recurrent miscarriage to prevent handicapped offspring.Human reproduction (Oxford, England). 2013; 28: 1737-1742
- Abnormalities in spontaneous abortions detected by g-banding and chromosomal microarray analysis (CMA) at a national reference laboratory.Molecular cytogenetics. 2014; 7: 33
- Clinical application of SNP array analysis in first-trimester pregnancy loss: A prospective study.Clinical genetics. 2017; 91: 849-858
- Trisomy recurrence: A reconsideration based on north American data.American journal of human genetics. 2004; 75: 376-385
- Implementation of a high-resolution single-nucleotide polymorphism array in analyzing the products of conception.Genetic testing and molecular biomarkers. 2016; 20: 352-358
- Genetic analysis of first-trimester miscarriages with a combination of cytogenetic karyotyping, microsatellite genotyping and arrayCGH.Clinical genetics. 2009; 75: 133-140
- Spectrum of cytogenomic abnormalities revealed by array comparative genomic hybridization on products of conception culture failure and normal karyotype samples.Journal of genetics and genomics = Yi chuan xue bao. 2016; 43: 121-131
- Identification of minor chromosomal defects causing abnormal foetus and spontaneous abortions.British journal of biomedical science. 2016; 73: 67-73
- First-trimester spontaneous pregnancy loss–molecular analysis using multiplex ligation-dependent probe amplification.Clinical genetics. 2016; 89: 620-624
Biography
