Advertisement

Membrane lipid replacement with nano-micelles in human sperm cryopreservation improves post-thaw function and acrosome protein integrity

      Abstract

      Research question

      Membrane lipid replacement (MLR) of oxidized membrane lipids can restore sperm cellular membrane functionality and help improve surface protein stability during cryopreservation. What are the effects of MLR with nano-micelles made from a glycerophospholipid (GPL) mixture and cholesterol-loaded cyclodextrin (CLC), on the cryosurvival and expression of acrosome-related proteins in thawed human spermatozoa?

      Design

      Twenty samples were used to determine the optimum level of nano-micelles by incubation of semen with different concentrations of GPL (0.1 and 1%) and CLC (1 and 2 mg/ml) (including GPL-0.1, GPL-1, CLC-1, CLC-2, CLC-1/GPL-0.1, CLC-2/GPL-0.1, CLC-1/GPL-1 and CLC-2/GPL-1) before cryopreservation. Then, 30 semen samples were collected, and each sample was divided into the following three aliquots: fresh, frozen control and frozen incubated with optimum level of nano-micelles (0.1% GPL and 1 mg/ml CLC).

      Results

      CLC-1/GPL-0.1 and GPL-0.1 significantly increased motility parameters. CLC-1, GPL-0.1 and CLC-1/GPL-0.1 significantly improved viability rate compared with frozen control group. Significantly higher mitochondrial activity and acrosome integrity, and a lower rate of apoptosis, were observed in the CLC-1/GPL-0.1 compared with the frozen control group. The expression ratios of arylsulfatase A (ARSA), serine protease 37 (PRSS37), serine protease inhibitor Kazal-type 2 (SPINK2) and equatorin (EQTN) significantly increased compared with the frozen control group.

      Conclusions

      Modification of membrane cholesterol and GPL mixtures in spermatozoa enhances their acrosome protein integrity by inhibiting early apoptotic changes and spontaneous acrosome reactions.

      KEYWORDS

      To read this article in full you will need to make a payment

      References

        • Abdelhafez F.
        • Bedaiwy M.
        • El-Nashar S.A.
        • Sabanegh E.
        • Desai N.
        Techniques for cryopreservation of individual or small numbers of human spermatozoa: A systematic review.
        Hum. Reprod. Update. 2009; 15 (https://doi:): 153-164https://doi.org/10.1093/humupd/dmn061
        • Agarwal A.
        • Panner Selvam M.K.
        • Baskaran S.
        Proteomic analyses of human sperm cells: Understanding the role of proteins and molecular pathways affecting male reproductive health.
        Int. J. Mol. Sci. 2020; 21 (https://doi.org/): 1621https://doi.org/10.3390/ijms21051621
        • Aksoy M.
        • Akman O.
        • Lehimcioğlu N.C.
        • Erdem H.
        Cholesterol-loaded cyclodextrin enhances osmotic tolerance and inhibits the acrosome reaction in rabbit spermatozoa.
        Anim. Reprod. Sci. 2010; 120 (https://doi.org/): 166-172https://doi.org/10.1016/j.anireprosci.2010.02.014
        • Am-In N.
        • Kirkwood R.N.
        • Techakumphu M.
        • Tantasuparuk W.
        Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility.
        Theriogenology. 2011; 75 (https://doi.org/): 897-903https://doi.org/10.1016/j.theriogenology.2010.10.032
        • Amaral A.
        • Castillo J.
        • Estanyol J.M.
        • Ballescà J.L.
        • Ramalho-Santos J.
        • Oliva R.
        Human sperm tail proteome suggests new endogenous metabolic pathways.
        Mol. Cell. Proteomics. 2013; 12 (https://doi.org/): 330-342https://doi.org/10.1074/mcp.M112.020552
        • Amidi F.
        • Farshad A.
        • Khor A.K.
        Effects of cholesterol-loaded cyclodextrin during freezing step of cryopreservation with tcgy extender containing bovine serum albumin on quality of goat spermatozoa.
        Cryobiology. 2010; 61 (https://doi.org/): 94-99https://doi.org/10.1016/j.cryobiol.2010.05.006
        • Amin B.Y.
        • Prasad J.K.
        • Ghosh S.K.
        • Lone S.A.
        • Kumar A.
        • Mustapha A.R.
        • Din O.
        • Kumar A.
        Effect of various levels of dissolved oxygen on reactive oxygen species and cryocapacitation-like changes in bull sperm.
        Reprod. Domest. Anim. 2018; 53 (https://doi.org/): 1033-1040https://doi.org/10.1111/rda.13200
        • Arav A.
        • Pearl M.
        • Zeron Y.
        Does membrane lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes?.
        Cryo. letters. 2000; 21: 179-186
        • Ashrafzadeh A.
        • Karsani S.A.
        • Nathan S.
        Mammalian sperm fertility related proteins.
        Int. J. Med. Sci. 2013; 10 (https://doi.org/): 1649-1657https://doi.org/10.7150/ijms.6395
        • Bailey J.L.
        • Lessard C.
        • Jacques J.
        • Brèque C.
        • Dobrinski I.
        • Zeng W.
        • Galantino-Homer H.L.
        Cryopreservation of boar semen and its future importance to the industry.
        Theriogenology. 2008; 70 (https://doi.org/): 1251-1259https://doi.org/10.1016/j.theriogenology.2008.06.014
        • Blanch E.
        • Tomás C.
        • Graham J.K.
        • Mocé E.
        Response of boar sperm to the treatment with cholesterol-loaded cyclodextrins added prior to cryopreservation.
        Reprod. Domest. Anim. 2012; 47 (https://doi.org/): 959-964https://doi.org/10.1111/j.1439-0531.2012.01999.x
        • Bogle O.A.
        • Kumar K.
        • Attardo-Parrinello C.
        • Lewis S.E.
        • Estanyol J.M.
        • Ballescà J.L.
        • Oliva R.
        Identification of protein changes in human spermatozoa throughout the cryopreservation process.
        Andrology. 2017; 5 (https://doi.org/): 10-22https://doi.org/10.1111/andr.12279
        • Bromfield E.G.
        • Aitken R.J.
        • Anderson A.L.
        • Mclaughlin E.A.
        • Nixon B.
        The impact of oxidative stress on chaperone-mediated human sperm-egg interaction.
        Hum. Reprod. 2015; 30 (https://doi.org/): 2597-2613https://doi.org/10.1093/humrep/dev214
        • Castillo J.
        • Bogle O.A.
        • Jodar M.
        • Torabi F.
        • Delgado-Dueñas D.
        • Estanyol J.M.
        • Ballescà J.L.
        • Miller D.
        • Oliva R.
        Proteomic changes in human sperm during sequential in vitro capacitation and acrosome reaction.
        Front Cell. Dev. Biol. 2019; 7 (https://doi.org/): 295https://doi.org/10.3389/fcell.2019.00295
        • Chanapiwat P.
        • Kaeoket K.
        • Tummaruk P.
        Effects of dha-enriched hen egg yolk and l-cysteine supplementation on quality of cryopreserved boar semen.
        Asian J. Androl. 2009; 11 (https://doi.org/): 600-608https://doi.org/10.1038/aja.2009.40
        • Chuaychu-Noo N.
        • Thananurak P.
        • Chankitisakul V.
        • Vongpralub T.
        Supplementing rooster sperm with cholesterol-loaded-cyclodextrin improves fertility after cryopreservation.
        Cryobiology. 2017; 74 (https://doi.org/): 8-12https://doi.org/10.1016/j.cryobiol.2016.12.012
        • Cross N.L.
        Decrease in order of human sperm lipids during capacitation.
        Biol. Reprod. 2003; 69 (https://doi.org/): 529-534https://doi.org/10.1095/biolreprod.102.013052
        • De Vantéry Arrighi C.
        • Lucas H.
        • Chardonnens D.
        • De Agostini A.
        Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: Effects on viability, motility and mitochondrial membrane potential.
        Reprod. Biol. Endocrinol. 2009; 7 (https://doi.org/): 1https://doi.org/10.1186/1477-7827-7-1
        • Del Valle I.
        • Gómez-Durán A.
        • Holt W.V.
        • Muiño-Blanco T.
        • Cebrián-Pérez J.A.
        Soy lecithin interferes with mitochondrial function in frozen-thawed ram spermatozoa.
        J. Androl. 2012; 33 (https://doi.org/): 717-725https://doi.org/10.2164/jandrol.111.014944
        • Drobnis E.Z.
        • Crowe L.M.
        • Berger T.
        • Anchordoguy T.J.
        • Overstreet J.W.
        • Crowe J.H.
        Cold shock damage is due to lipid phase transitions in cell membranes: A demonstration using sperm as a model.
        J. Exp. Zool. 1993; 265: 432-437
        • Fernández J.L.
        • Muriel L.
        • Goyanes V.
        • Segrelles E.
        • Gosálvez J.
        • Enciso M.
        • Lafromboise M.
        • De Jonge C.
        Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test.
        Fertil. Steril. 2005; 84: 833-842https://doi.org/10.1016/j.fertnstert.2004.11.089
        • Ferreira G.
        • Costa C.
        • Bassaizteguy V.
        • Santos M.
        • Cardozo R.
        • Montes J.
        • Settineri R.
        • Nicolson G.L.
        Incubation of human sperm with micelles made from glycerophospholipid mixtures increases sperm motility and resistance to oxidative stress.
        PLoS One. 2018; 13 (https://doi.org/)e0197897https://doi.org/10.1371/journal.pone.0197897
        • Feyzi S.
        • Sharafi M.
        • Rahimi S.
        Stress preconditioning of rooster semen before cryopreservation improves fertility potential of thawed sperm.
        Poult. Sci. 2018; 97 (https://doi.org/): 2582-2590https://doi.org/10.3382/ps/pey067
        • Gholami D.
        • Ghaffari S.M.
        • Shahverdi A.
        • Sharafi M.
        • Riazi G.
        • Fathi R.
        • Esmaeili V.
        • Hezavehei M.
        Proteomic analysis and microtubule dynamicity of human sperm in electromagnetic cryopreservation.
        J. Cell. Biochem. 2018; 119 (https://doi.org/): 9483-9497https://doi.org/10.1002/jcb.27265
        • Hao J.
        • Chen M.
        • Ji S.
        • Wang X.
        • Wang Y.
        • Huang X.
        • Yang L.
        • Wang Y.
        • Cui X.
        • Lv L.
        • Liu Y.
        • Gao F.
        Equatorin is not essential for acrosome biogenesis but is required for the acrosome reaction.
        Biochem. Biophys. Res. Commun. 2014; 444 (https://doi.org/): 537-542https://doi.org/10.1016/j.bbrc.2014.01.080
        • Hezavehei M.
        • Kouchesfahani H.M.
        • Shahverdi A.
        • Sharafi M.
        • Salekdeh G.H.
        • Eftekhari-Yazdi P.
        Preconditioning of sperm with sublethal nitrosative stress: A novel approach to improve frozen-thawed sperm function.
        Reprod. Biomed. Online. 2019; 38 (https://doi.org/): 413-425https://doi.org/10.1016/j.rbmo.2018.11.029
        • Hezavehei M.
        • Mohseni Kouchesfahani H.
        • Shahverdi A.H.
        • Sharafi M.
        • Hosseini Salekdeh G.H.
        • Eftekhari-Yazdi P.
        Induction of sublethal oxidative stress on human sperm before cryopreservation: A time-dependent response in post-thawed sperm parameters.
        Cell. J. 2019; 20 (https://doi.org/): 537-543https://doi.org/10.22074/cellj.2019.5639
        • Hezavehei M.
        • Sharafi M.
        • Kouchesfahani H.M.
        • Henkel R.
        • Agarwal A.
        • Esmaeili V.
        • Shahverdi A.
        Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches.
        Reprod. Biomed. Online. 2018; 37 (https://doi.org/): 327-339https://doi.org/10.1016/j.rbmo.2018.05.012
        • Ito C.
        • Yamatoya K.
        • Yoshida K.
        • Fujimura L.
        • Sugiyama H.
        • Suganami A.
        • Tamura Y.
        • Hatano M.
        • Miyado K.
        • Toshimori K.
        Deletion of eqtn in mice reduces male fertility and sperm-egg adhesion.
        Reproduction. 2018; 156 (https://doi.org/): 579-590https://doi.org/10.1530/rep-18-0394
        • Kelsey K.M.
        • Zigo M.
        • Thompson W.E.
        • Kerns K.
        • Manandhar G.
        • Sutovsky M.
        • Sutovsky P.
        Reciprocal surface expression of arylsulfatase a and ubiquitin in normal and defective mammalian spermatozoa.
        Cell Tissue Res. 2020; 379 (https://doi.org/): 561-576https://doi.org/10.1007/s00441-019-03144-1
        • Kherraf Z.E.
        • Christou-Kent M.
        • Karaouzene T.
        • Amiri-Yekta A.
        • Martinez G.
        • Vargas A.S.
        • Lambert E.
        • Borel C.
        • Dorphin B.
        • Aknin-Seifer I.
        • Mitchell M.J.
        • Metzler-Guillemain C.
        • Escoffier J.
        • Nef S.
        • Grepillat M.
        • Thierry-Mieg N.
        • Satre V.
        • Bailly M.
        • Boitrelle F.
        • Pernet-Gallay K.
        • Hennebicq S.
        • Faure J.
        • Bottari S.P.
        • Coutton C.
        • Ray P.F.
        • Arnoult C.
        Spink2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes.
        EMBO Mol. Med. 2017; 9 (https://doi.org/): 1132-1149https://doi.org/10.15252/emmm.201607461
        • Liu J.
        • Shen C.
        • Fan W.
        • Chen Y.
        • Zhang A.
        • Feng Y.
        • Li Z.
        • Kuang Y.
        • Wang Z.
        Low levels of prss37 protein in sperm are associated with many cases of unexplained male infertility.
        Acta Biochim. Biophys. Sin. (Shanghai). 2016; 48 (https://doi.org/): 1058-1065https://doi.org/10.1093/abbs/gmw096
        • Lone S.A.
        Possible mechanisms of cholesterol-loaded cyclodextrin action on sperm during cryopreservation.
        Anim. Reprod. Sci. 2018; 192 (https://doi.org/): 1-5https://doi.org/10.1016/j.anireprosci.2018.03.009
        • Longobardi V.
        • Albero G.
        • De Canditiis C.
        • Salzano A.
        • Natale A.
        • Balestrieri A.
        • Neglia G.
        • Campanile G.
        • Gasparrini B.
        Cholesterol-loaded cyclodextrins prevent cryocapacitation damages in buffalo (bubalus bubalis) cryopreserved sperm.
        Theriogenology. 2017; 89 (https://doi.org/): 359-364https://doi.org/10.1016/j.theriogenology.2016.09.048
        • Maryam Hezavehei M.M.
        • Salekdeh Ghasem Hosseini
        • Shahverdi Abdolhossein
        • Eftekhari-Yazdi Poopak
        • Sharafi Mohsen
        Linking transcriptomics and proteomics in cryopreserved human sperm.
        Cryobiology. 2018; 80: 175
        • Moce E.
        • Blanch E.
        • Tomas C.
        • Graham J.K.
        Use of cholesterol in sperm cryopreservation: Present moment and perspectives to future.
        Reprod. Domest. Anim. 2010; 45 (https://doi.org/): 57-66https://doi.org/10.1111/j.1439-0531.2010.01635.x
        • Moore A.I.
        • Squires E.L.
        • Graham J.K.
        Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival.
        Cryobiology. 2005; 51 (https://doi.org/): 241-249https://doi.org/10.1016/j.cryobiol.2005.07.004
        • Mousavi S.M.
        • Towhidi A.
        • Zhandi M.
        • Amoabediny G.
        • Mohammadi-Sangcheshmeh A.
        • Sharafi M.
        • Hussaini S.M.H.
        Comparison of two different antioxidants in a nano lecithin-based extender for bull sperm cryopreservation.
        Anim. Reprod. Sci. 2019; 209 (https://doi.org/https://doi.org/)106171https://doi.org/10.1016/j.anireprosci.2019.106171
        • Movassaghi S.
        • Saki G.
        • Javadnia F.
        • Panahi M.
        • Mahmoudi M.
        • Rhim F.
        Effects of methyl-beta-cyclodextrin and cholesterol on cryosurvival of spermatozoa from c57bl/6 mouse.
        Pak. J. Biol. Sci. 2009; 12 (https://doi.org/): 19-25https://doi.org/10.3923/pjbs.2009.19.25
        • Müller K.
        • Müller P.
        • Pincemy G.
        • Kurz A.
        • Labbe C.
        Characterization of sperm plasma membrane properties after cholesterol modification: Consequences for cryopreservation of rainbow trout spermatozoa.
        Biol. Reprod. 2008; 78 (https://doi.org/): 390-399https://doi.org/10.1095/biolreprod.107.064253
        • Nekoonam S.
        • Nashtaei M.S.
        • Naji M.
        • Zangi B.M.
        • Amidi F.
        Effect of trolox on sperm quality in normozospermia and oligozospermia during cryopreservation.
        Cryobiology. 2016; 72 (https://doi.org/): 106-111https://doi.org/10.1016/j.cryobiol.2016.02.008
        • Nicolson G.L.
        • Ash M.E.
        Membrane lipid replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.
        Biochim. Biophys. Acta Biomembr. 2017; 1859 (https://doi.org/): 1704-1724https://doi.org/10.1016/j.bbamem.2017.04.013
        • Nicolson G.L.
        • Rosenblatt S.
        • De Mattos G.F.
        • Settineri R.
        • Breeding P.C.
        • Ellithorpe R.R.
        • Ash M.E.
        Clinical uses of membrane lipid replacement supplements in restoring membrane function and reducing fatigue in chronic diseases and cancer.
        Discoveries (Craiova). 2016; 4 (https://doi.org/): e54https://doi.org/10.15190/d.2016.1
        • Nijs M.
        • Ombelet W.
        Cryopreservation of human sperm.
        Hum. Fertil. 2001; 4 (https://doi.org/): 158-163https://doi.org/10.1080/1464727012000199232
        • Ozkavukcu S.
        • Erdemli E.
        • Isik A.
        • Oztuna D.
        • Karahuseyinoglu S.
        Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa.
        J. Assist. Reprod. Genet. 2008; 25 (https://doi.org/): 403-411https://doi.org/10.1007/s10815-008-9232-3
        • Panner Selvam M.K.
        • Agarwal A.
        • Pushparaj P.N.
        • Baskaran S.
        • Bendou H.
        Sperm proteome analysis and identification of fertility-associated biomarkers in unexplained male infertility.
        Genes (Basel). 2019; 10 (https://doi.org/): 522https://doi.org/10.3390/genes10070522
        • Peris-Frau P.
        • Soler A.J.
        • Iniesta-Cuerda M.
        • Martín-Maestro A.
        • Sánchez-Ajofrín I.
        • Medina-Chávez D.A.
        • Fernández-Santos M.R.
        • García-Álvarez O.
        • Maroto-Morales A.
        • Montoro V.
        • Garde J.J.
        Sperm cryodamage in ruminants: Understanding the molecular changes induced by the cryopreservation process to optimize sperm quality.
        Int. J. Mol. Sci. 2020; 21 (https://doi.org/): 2781https://doi.org/10.3390/ijms21082781
        • Purdy P.H.
        • Graham J.K.
        Effect of adding cholesterol to bull sperm membranes on sperm capacitation, the acrosome reaction, and fertility.
        Biol. Reprod. 2004; 71 (https://doi.org/): 522-527https://doi.org/10.1095/biolreprod.103.025577
        • Purdy P.H.
        • Graham J.K.
        Effect of cholesterol-loaded cyclodextrin on the cryosurvival of bull sperm.
        Cryobiology. 2004; 48 (https://doi.org/): 36-45https://doi.org/10.1016/j.cryobiol.2003.12.001
        • Quinn P.J.
        • Chow P.Y.
        • White I.G.
        Evidence that phospholipid protects ram spermatozoa from cold shock at a plasma membrane site.
        J. Reprod. Fertil. 1980; 60 (https://doi.org/): 403-407https://doi.org/10.1530/jrf.0.0600403
        • Rahimizadeh P.
        • Topraggaleh T.R.
        • Nasr-Esfahani M.H.
        • Ziarati N.
        • Mirshahvaladi S.
        • Esmaeili V.
        • Seifi S.
        • Eftekhari-Yazdi P.
        • Shahverdi A.
        The alteration of plczeta protein expression in unexplained infertile and asthenoteratozoospermic patients: A potential effect on sperm fertilization ability.
        Mol. Reprod. Dev. 2020; 87 (https://doi.org/): 115-123https://doi.org/10.1002/mrd.23293
        • Rajoriya J.S.
        • Singh A.K.
        • Ojha B.K.
        • Raje A.
        Role of cholesterol loaded cyclodextrin (clc) in cryocapacitation of sperm–a review.
        WJAS. 2019; 11: 1815-1826
        • Roudebush W.E.
        Role of platelet-activating factor in reproduction: Sperm function.
        Asian J. Androl. 2001; 3: 81-85
        • Santini S.J.
        • Cordone V.
        • Falone S.
        • Mijit M.
        • Tatone C.
        • Amicarelli F.
        • Di Emidio G.
        Role of mitochondria in the oxidative stress induced by electromagnetic fields: Focus on reproductive systems.
        Oxid. Med. Cell. Longev. 2018; 2018 (https://doi.org/)5076271https://doi.org/10.1155/2018/5076271
        • Schröter F.
        • Jakop U.
        • Teichmann A.
        • Haralampiev I.
        • Tannert A.
        • Wiesner B.
        • Müller P.
        • Müller K.
        Lipid dynamics in boar sperm studied by advanced fluorescence imaging techniques.
        Eur. Biophys. J. 2016; 45 (https://doi.org/): 149-163https://doi.org/10.1007/s00249-015-1084-z
        • Shahverdi A.
        • Sharafi M.
        • Gourabi H.
        • Yekta A.A.
        • Esmaeili V.
        • Sharbatoghli M.
        • Janzamin E.
        • Hajnasrollahi M.
        • Mostafayi F.
        Fertility and flow cytometric evaluations of frozen-thawed rooster semen in cryopreservation medium containing low-density lipoprotein.
        Theriogenology. 2015; 83 (https://doi.org/): 78-85https://doi.org/10.1016/j.theriogenology.2014.07.044
        • Shen C.
        • Kuang Y.
        • Liu J.
        • Feng J.
        • Chen X.
        • Wu W.
        • Chi J.
        • Tang L.
        • Wang Y.
        • Fei J.
        • Wang Z.
        Prss37 is required for male fertility in the mouse.
        Biol. Reprod. 2013; 88 (https://doi.org/): 123https://doi.org/10.1095/biolreprod.112.107086
        • Stanic P.
        • Tandara M.
        • Sonicki Z.
        • Simunic V.
        • Radakovic B.
        • Suchanek E.
        Comparison of protective media and freezing techniques for cryopreservation of human semen.
        Eur J. Obstet. Gynecol. Reprod. Biol. 2000; 91 (https://doi.org/): 65-70https://doi.org/10.1016/s0301-2115(99)00255-9
        • Taher-Mofrad S.M.J.
        • Topraggaleh T.R.
        • Ziarati N.
        • Bucak M.N.
        • Nouri M.
        • Seifi S.
        • Esmaeili V.
        • Rahimizadeh P.
        • Shahverdi A.
        Knockout serum replacement is an efficient serum substitute for cryopreservation of human spermatozoa.
        Cryobiology. 2020; 92 (https://doi.org/): 208-214https://doi.org/10.1016/j.cryobiol.2020.01.013
        • Vireque A.A.
        • Tata A.
        • Silva O.F.
        • Loturco E.G.
        • Azzolini A.
        • Ferreira C.R.
        • Dantas M.H.
        • Ferriani R.A.
        • Reis R.M.
        Effects of n-6 and n-3 polyunsaturated acid-rich soybean phosphatidylcholine on membrane lipid profile and cryotolerance of human sperm.
        Fertil. Steril. 2016; 106 (273-283.e6 https://doi.org/)https://doi.org/10.1016/j.fertnstert.2016.03.044
        • Wang S.
        • Wang W.
        • Xu Y.
        • Tang M.
        • Fang J.
        • Sun H.
        • Sun Y.
        • Gu M.
        • Liu Z.
        • Zhang Z.
        • Lin F.
        • Wu T.
        • Song N.
        • Wang Z.
        • Zhang W.
        • Yin C.
        Proteomic characteristics of human sperm cryopreservation.
        Proteomics. 2014; 14 (https://doi.org/): 298-310https://doi.org/10.1002/pmic.201300225
        • Wojtusik J.
        • Wang Y.
        • Pukazhenthi B.S.
        Pretreatment with cholesterol-loaded cyclodextrins prevents loss of motility associated proteins during cryopreservation of addra gazelle (nanger dama ruficollis) spermatozoa.
        Cryobiology. 2018; 81 (https://doi.org/): 74-80https://doi.org/10.1016/j.cryobiol.2018.02.007
        • Yoon S.J.
        • Rahman M.S.
        • Kwon W.S.
        • Ryu D.Y.
        • Park Y.J.
        • Pang M.G.
        Proteomic identification of cryostress in epididymal spermatozoa.
        J Anim. Sci. Biotechnol. 2016; 7 (https://doi.org/): 67https://doi.org/10.1186/s40104-016-0128-2
        • Zaniboni L.
        • Cerolini S.
        Liquid storage of turkey semen: Changes in quality parameters, lipid composition and susceptibility to induced in vitro peroxidation in control, n-3 fatty acids and alpha-tocopherol rich spermatozoa.
        Anim. Reprod. Sci. 2009; 112 (https://doi.org/): 51-65https://doi.org/10.1016/j.anireprosci.2008.04.002
        • Zeron Y.
        • Tomczak M.
        • Crowe J.
        • Arav A.
        The effect of liposomes on thermotropic membrane phase transitions of bovine spermatozoa and oocytes: Implications for reducing chilling sensitivity.
        Cryobiology. 2002; 45 (https://doi.org/): 143-152https://doi.org/10.1016/s0011-2240(02)00123-2

      Biography

      Maryam Hezavehei is a postdoctoral and senior researcher in the Reproductive Biomedicine Research Center, Royan Institute in Tehran, Iran. She obtained her PhD in developmental biology from Kharazmi University, Tehran, Iran. Her main research interest is fertility preservation strategies including sperm cryopreservation.
      Key message
      Sperm cryopreservation is a fundamental tool for male fertility preservation. Membrane lipid peroxidation leads to loss of sperm surface proteins during cryopreservation. The use of nano-micelles can improve the stability of surface proteins, which play an important role in thawed sperm fertilization.