Advertisement
Article| Volume 43, ISSUE 2, P161-171, August 2021

The inhibition of WIP1 phosphatase accelerates the depletion of primordial follicles

      Abstract

      Research question

      What role does wild-type p53-induced phosphatase 1 (WIP1) play in the regulation of primordial follicle development?

      Design

      WIP1 expression was detected in the ovaries of mice of different ages by western blotting and immunohistochemical staining. Three-day-old neonatal mouse ovaries were cultured in vitro with or without the WIP1 inhibitor GSK2830371 (10 μM) for 4 days. Ovarian morphology, follicle growth and follicle classification were analysed and the PI3K–AKT–mTOR signal pathway and the WIP1–p53-related mitochondrial apoptosis pathway evaluated.

      Results

      WIP1 expression was downregulated with age. Primordial follicles were significantly decreased in the GSK2830371-treated group, without a significant increase in growing follicles. The ratio of growing follicles to primordial follicles was not significantly different between the control and GSK2830371 groups, and no significant variation was observed in the PI3K–AKT–mTOR signal pathway. The inhibition of WIP1 phosphatase accelerated primordial follicle atresia by activating the p53–BAX–caspase-3 pathway.

      Conclusions

      These findings reveal that WIP1 participates in regulating primordial follicle development and that inhibiting WIP1 phosphatase leads to massive primordial follicle loss via interaction with the p53–BAX–caspase-3 pathway. This might also provide valuable information for understanding decreased ovarian reserve during ovarian ageing.

      KEYWORDS

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Broekmans F.J.
        • Soules M.R.
        • Fauser B.C.
        Ovarian aging: mechanisms and clinical consequences.
        Endocr. Rev. 2009; 30: 465-493
        • Bulavin D.V.
        • Phillips C.
        • Nannenga B.
        • Timofeev O.
        • Donehower L.A.
        • Anderson C.W.
        • Appella E.
        • Fornace Jr., A.J.
        Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway.
        Nat. Genet. 2004; 36: 343-350
        • Castrillon D.H.
        • Miao L.
        • Kollipara R.
        • Horner J.W.
        • DePinho R.A.
        Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a.
        Science. 2003; 301: 215-218
        • Castrillon D.H.
        • Quade B.J.
        • Wang T.Y.
        • Quigley C.
        • Crum C.P.
        The human VASA gene is specifically expressed in the germ cell lineage.
        Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 9585-9590
        • Chen Z.
        • Wang L.
        • Yao D.
        • Yang T.
        • Cao W.M.
        • Dou J.
        • Pang J.C.
        • Guan S.
        • Zhang H.
        • Yu Y.
        • Zhao Y.
        • Wang Y.
        • Xu X.
        • Shi Y.
        • Patel R.
        • Zhang H.
        • Vasudevan S.A.
        • Liu S.
        • Yang J.
        • Nuchtern J.G.
        Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis.
        Sci. Rep. 2016; 6: 38011
        • Chen Z.
        • Yi W.
        • Morita Y.
        • Wang H.
        • Cong Y.
        • Liu J.P.
        • Xiao Z.
        • Rudolph K.L.
        • Cheng T.
        • Ju Z.
        Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways.
        Nat. Commun. 2015; 6: 6808
        • Choi J.
        • Nannenga B.
        • Demidov O.N.
        • Bulavin D.V.
        • Cooney A.
        • Brayton C.
        • Zhang Y.
        • Mbawuike I.N.
        • Bradley A.
        • Appella E.
        • Donehower L.A.
        Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control.
        Mol. Cell. Biol. 2002; 22: 1094-1105
        • De Felici M.
        • Klinger F.G.
        • Farini D.
        • Scaldaferri M.L.
        • Iona S.
        • Lobascio M.
        Establishment of oocyte population in the fet al ovary: Primordial germ cell proliferation and oocyte programmed cell death.
        Reprod. Biomed. Online. 2005; 10: 182-191
        • Demidov O.N.
        • Zhu Y.
        • Kek C.
        • Goloudina A.R.
        • Motoyama N.
        • Bulavin D.V.
        Role of Gadd45a in Wip1-dependent regulation of intestinal tumorigenesis.
        Cell Death Differ. 2012; 19: 1761-1768
        • El-Mestrah M.
        • Castle P.E.
        • Borossa G.
        • Kan F.W.
        Subcellular distribution of ZP1, ZP2, and ZP3 glycoproteins during folliculogenesis and demonstration of their topographical disposition within the zona matrix of mouse ovarian oocytes.
        Biol. Reprod. 2002; 66: 866-876
        • Emelyanov A.
        • Bulavin D.V.
        Wip1 phosphatase in breast cancer.
        Oncogene. 2015; 34: 4429-4438
        • Fiscella M.
        • Zhang H.
        • Fan S.
        • Sakaguchi K.
        • Shen S.
        • Mercer W.E.
        • Vande Woude G.F.
        • O'Connor P.M.
        • Appella E.
        Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner.
        Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 6048-6053
        • Gilmartin A.G.
        • Faitg T.H.
        • Richter M.
        • Groy A.
        • Seefeld M.A.
        • Darcy M.G.
        • Peng X.
        • Federowicz K.
        • Yang J.
        • Zhang S.Y.
        • Minthorn E.
        • Jaworski J.P.
        • Schaber M.
        • Martens S.
        • McNulty D.E.
        • Sinnamon R.H.
        • Zhang H.
        • Kirkpatrick R.B.
        • Nevins N.
        • Cui G.
        • Pietrak B.
        • Diaz E.
        • Jones A.
        • Brandt M.
        • Schwartz B.
        • Heerding D.A.
        • Kumar R.
        Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction.
        Nat. Chem. Biol. 2014; 10: 181-187
        • Goloudina A.R.
        • Kochetkova E.Y.
        • Pospelova T.V.
        • Demidov O.N.
        Wip1 phosphatase: between p53 and MAPK kinases pathways.
        Oncotarget. 2016; 7: 31563-31571
        • Hirshfield A.N.
        Development of follicles in the mammalian ovary.
        Int. Rev. Cytol. 1991; 124: 43-101
        • Hsueh A.J.
        • Kawamura K.
        • Cheng Y.
        • Fauser B.C.
        Intraovarian control of early folliculogenesis.
        Endocr. Rev. 2015; 36: 1-24
        • Hussein M.R.
        Apoptosis in the ovary: molecular mechanisms.
        Hum. Reprod. Update. 2005; 11: 162-177
        • Jiang Z.-Z.
        • Hu M.-W.
        • Ma X.-S.
        • Schatten H.
        • Fan H.-Y.
        • Wang Z.-B.
        • Sun Q.-Y.
        LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool.
        Oncotarget. 2016; 7: 5738-5753
        • Kim J.M.
        • Yoon Y.D.
        • Tsang B.K.
        Involvement of the Fas/Fas ligand system in p53-mediated granulosa cell apoptosis during follicular development and atresia.
        Endocrinology. 1999; 140: 2307-2317
        • Le Guezennec X.
        • Bulavin D.V.
        WIP1 phosphatase at the crossroads of cancer and aging.
        Trends Biochem. Sci. 2010; 35: 109-114
        • Leem J.
        • Kim J.S.
        • Oh J.S.
        WIP1 phosphatase suppresses the DNA damage response during G2/prophase arrest in mouse oocytes.
        Biol. Reprod. 2018; 99: 798-805
        • Lu X.
        • Nannenga B.
        • Donehower L.A.
        PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints.
        Genes Dev. 2005; 19: 1162-1174
        • McGee E.A.
        • Hsueh A.J.
        Initial and cyclic recruitment of ovarian follicles.
        Endocr. Rev. 2000; 21: 200-214
        • Niu P.
        • Wei Y.
        • Gao Q.
        • Zhang X.
        • Hu Y.
        • Qiu Y.
        • Mu Y.
        • Li K.
        Male Fertility Potential Molecular Mechanisms Revealed by iTRAQ-Based Quantitative Proteomic Analysis of the Epididymis from Wip1(-/-) Mice.
        Omics. 2019; 23: 54-66
        • Olcina M.M.
        • Hammond E.M.
        WIP1 and senescence: oxygen matters.
        Cell Cycle. 2014; 13: 1062
        • Parrott J.A.
        • Skinner M.K.
        Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis.
        Endocrinology. 1999; 140: 4262-4271
        • Pechackova S.
        • Burdova K.
        • Benada J.
        • Kleiblova P.
        • Jenikova G.
        • Macurek L.
        Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3.
        Oncotarget. 2016; 7: 14458-14475
        • Pepling M.E.
        • Spradling A.C.
        Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles.
        Dev. Biol. 2001; 234: 339-351
        • Qiu C.W.
        • Liu Z.Y.
        • Hou K.
        • Liu S.Y.
        • Hu Y.X.
        • Zhang L.
        • Zhang F.L.
        • Lv K.Y.
        • Kang Q.
        • Hu W.Y.
        • Ma N.
        • Jiao Y.
        • Bai W.J.
        • Xiao Z.C.
        Wip1 knockout inhibits neurogenesis by affecting the Wnt/beta-catenin signaling pathway in focal cerebral ischemia in mice.
        Exp. Neurol. 2018; 309: 44-53
        • Reddy P.
        • Liu L.
        • Adhikari D.
        • Jagarlamudi K.
        • Rajareddy S.
        • Shen Y.
        • Du C.
        • Tang W.
        • Hämäläinen T.
        • Peng S.L.
        • Lan Z.J.
        • Cooney A.J.
        • Huhtaniemi I.
        • Liu K.
        Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool.
        Science. 2008; 319: 611-613
        • Reddy P.
        • Zheng W.
        • Liu K.
        Mechanisms maintaining the dormancy and survival of mammalian primordial follicles.
        Trends Endocrinol. Metab. 2010; 21: 96-103
        • Ren Y.
        • Suzuki H.
        • Jagarlamudi K.
        • Golnoski K.
        • McGuire M.
        • Lopes R.
        • Pachnis V.
        • Rajkovic A.
        Lhx8 regulates primordial follicle activation and postnatal folliculogenesis.
        BMC Biol. 2015; 13: 39
        • Richter M.
        • Dayaram T.
        • Gilmartin A.G.
        • Ganji G.
        • Pemmasani S.K.
        • Van Der Key H.
        • Shohet J.M.
        • Donehower L.A.
        • Kumar R.
        WIP1 phosphatase as a potential therapeutic target in neuroblastoma.
        PLoS One. 2015; 10e0115635
        • Sakai H.
        • Fujigaki H.
        • Mazur S.J.
        • Appella E.
        Wild-type p53-induced phosphatase 1 (Wip1) forestalls cellular premature senescence at physiological oxygen levels by regulating DNA damage response signaling during DNA replication.
        Cell Cycle. 2014; 13: 1015-1029
        • Salminen A.
        • Kaarniranta K.
        Control of p53 and NF-kappaB signaling by WIP1 and MIF: role in cellular senescence and organismal aging.
        Cell Signal. 2011; 23: 747-752
        • Sharum I.B.
        • Granados-Aparici S.
        • Warrander F.C.
        • Tournant F.P.
        • Fenwick M.A.
        Serine threonine kinase receptor associated protein regulates early follicle development in the mouse ovary.
        Reproduction. 2017; 153: 221-231
        • Shen X.F.
        • Zhao Y.
        • Jiang J.P.
        • Guan W.X.
        • Du J.F.
        Phosphatase Wip1 in Immunity: An Overview and Update.
        Front. Immunol. 2017; 8: 8
        • Song K.
        • Ma W.
        • Huang C.
        • Ding J.
        • Cui D.
        • Zhang M.
        Expression Pattern of Mouse Vasa Homologue (MVH) in the Ovaries of C57BL/6 Female Mice.
        Medical Science Monitor. 2016; 22: 2656-2663
        • Tilly J.L.
        • Tilly K.I.
        • Kenton M.L.
        • Johnson A.L.
        Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels.
        Endocrinology. 1995; 136: 232-241
        • Toyooka Y.
        • Tsunekawa N.
        • Takahashi Y.
        • Matsui Y.
        • Satoh M.
        • Noce T.
        Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development.
        Mech. Dev. 2000; 93: 139-149
        • Wang P.
        • Su H.
        • Zhang L.
        • Chen H.
        • Hu X.
        • Yang F.
        • Lv J.
        • Zhang L.
        • Zhao Y.
        Phosphatase wild-type p53-induced phosphatase 1 controls the development of TH9 cells and allergic airway inflammation.
        J. Allergy Clin. Immunol. 2018; 141: 2168-2181
        • Wang P.
        • Zhao Y.
        • Liu K.
        • Liu X.
        • Liang J.
        • Zhou H.
        • Wang Z.
        • Zhou Z.
        • Xu N.
        Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner.
        J. Cell. Biochem. 2019; 120: 15709-15718
        • Wei Y.
        • Gao Q.
        • Niu P.
        • Xu K.
        • Qiu Y.
        • Hu Y.
        • Liu S.
        • Zhang X.
        • Yu M.
        • Liu Z.
        • Wang B.
        • Mu Y.
        • Li K.
        Integrative Proteomic and Phosphoproteomic Profiling of Testis from Wip1 Phosphatase-Knockout Mice: Insights into Mechanisms of Reduced Fertility.
        Mol. Cell Proteomics. 2019; 18: 216-230
        • Wong E.S.
        • Le Guezennec X.
        • Demidov O.N.
        • Marshall N.T.
        • Wang S.T.
        • Krishnamurthy J.
        • Sharpless N.E.
        • Dunn N.R.
        • Bulavin D.V.
        p38MAPK controls expression of multiple cell cycle inhibitors and islet proliferation with advancing age.
        Dev. Cell. 2009; 17: 142-149
        • Wu C.E.
        • Esfandiari A.
        • Ho Y.H.
        • Wang N.
        • Mahdi A.K.
        • Aptullahoglu E.
        • Lovat P.
        • Lunec J.
        Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma.
        Br. J. Cancer. 2018; 118: 495-508
        • Xu F.
        • Chen L.
        • Zhao X.
        • Zhong H.
        • Cui L.
        • Jiang L.
        • Huang H.
        • Li L.
        • Zeng S.
        • Li M.
        Interaction of Wip1 and NF-kappaB regulates neuroinflammatory response in astrocytes.
        Inflamm. Res. 2017;
        • Yang S.
        • Wang S.
        • Luo A.
        • Ding T.
        • Lai Z.
        • Shen W.
        • Ma X.
        • Cao C.
        • Shi L.
        • Jiang J.
        • Rong F.
        • Ma L.
        • Tian Y.
        • Du X.
        • Lu Y.
        • Li Y.
        • Wang S.
        Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary.
        Biol. Reprod. 2013; 89: 126
        • Yi W.
        • Hu X.
        • Chen Z.
        • Liu L.
        • Tian Y.
        • Chen H.
        • Cong Y.S.
        • Yang F.
        • Zhang L.
        • Rudolph K.L.
        • Zhang Z.
        • Zhao Y.
        • Ju Z.
        Phosphatase Wip1 controls antigen-independent B-cell development in a p53-dependent manner.
        Blood. 2015; 126: 620-628
        • Yin S.
        • Wang P.
        • Yang L.
        • Liu Y.
        • Wang Y.
        • Liu M.
        • Qi Z.
        • Meng J.
        • Shi T.Y.
        • Yang G.
        • Zang R.
        Wip1 suppresses ovarian cancer metastasis through the ATM/AKT/Snail mediated signaling.
        Oncotarget. 2016; 7: 29359-29370
        • Zhang L.
        • Chen L.H.
        • Wan H.
        • Yang R.
        • Wang Z.
        • Feng J.
        • Yang S.
        • Jones S.
        • Wang S.
        • Zhou W.
        • Zhu H.
        • Killela P.J.
        • Zhang J.
        • Wu Z.
        • Li G.
        • Hao S.
        • Wang Y.
        • Webb J.B.
        • Friedman H.S.
        • Friedman A.H.
        • McLendon R.E.
        • He Y.
        • Reitman Z.J.
        • Bigner D.D.
        • Yan H.
        Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas.
        Nat. Genet. 2014; 46: 726-730
        • Zhang L.
        • Liu L.
        • He Z.
        • Li G.
        • Liu J.
        • Song Z.
        • Jin H.
        • Rudolph K.L.
        • Yang H.
        • Mao Y.
        • Zhang L.
        • Zhang H.
        • Xiao Z.
        • Ju Z.
        Inhibition of wild-type p53-induced phosphatase 1 promotes liver regeneration in mice by direct activation of mammalian target of rapamycin.
        Hepatology. 2015; 61: 2030-2041
        • Zhang T.
        • Du X.
        • Zhao L.
        • He M.
        • Lin L.
        • Guo C.
        • Zhang X.
        • Han J.
        • Yan H.
        • Huang K.
        • Sun G.
        • Yan L.
        • Zhou B.
        • Xia G.
        • Qin Y.
        • Wang C.
        SIRT1 facilitates primordial follicle recruitment independent of deacetylase activity through directly modulating Akt1 and mTOR transcription.
        FASEB J. 2019; 33: 14703-14716
        • Zhen H.
        • Zhao L.
        • Ling Z.
        • Kuo L.
        • Xue X.
        • Feng J.
        Wip1 regulates blood-brain barrier function and neuro-inflammation induced by lipopolysaccharide via the sonic hedgehog signaling signaling pathway.
        Mol. Immunol. 2018; 93: 31-37
      1. Zhou, S., Yan, W., Shen, W., Cheng, J., Xi, Y., Yuan, S., Fu, F., Ding, T., Luo, A.,Wang, S., Low expression of SEMA6C accelerates the primordial follicle activation in the neonatal mouse ovary. 2017.

      2. Zhou, S., Yan, W., Shen, W., Cheng, J., Xi, Y., Yuan, S., Fu, F., Ding, T., Luo, A.,Wang, S., Low expression of SEMA6C accelerates the primordial follicle activation in the neonatal mouse ovary. 2018; 22: 486-496.

        • Zhu Y.
        • Demidov O.N.
        • Goh A.M.
        • Virshup D.M.
        • Lane D.P.
        • Bulavin D.V.
        Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging.
        J. Clin. Invest. 2014; 124: 3263-3273
        • Zhu Y.H.
        • Bulavin D.V.
        Wip1-dependent signaling pathways in health and diseases.
        Prog. Mol. Biol. Transl. Sci. 2012; 106: 307-325

      Biography

      Shixuan Wang, PhD, is the Deputy Director of the National Center for Clinical Obstetrics and Gynecology Diseases, Director of Department of Gynecology of Tongji Hospital in Wuhan, China. His research interests include exploring mechanisms of ovarian ageing and the discovery of new targets for ovarian ageing treatment.
      Key message
      Abnormal regulation of primordial follicle development accelerates the depletion of primordial follicles, accelerating the ovarian ageing process. WIP1 was proved to regulate primordial follicle development and influence the size of the primordial follicle pool. Inhibiting WIP1 phosphatase accelerates primordial follicle atresia and does not significantly promote primordial follicle activation.