Advertisement

The clinical application of single-sperm-based single-nucleotide polymorphism haplotyping for PGT of patients with genetic diseases

  • Author Footnotes
    # These authors should be regarded as joint first authors.
    Chenyang Huang
    Footnotes
    # These authors should be regarded as joint first authors.
    Affiliations
    Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

    Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
    Search for articles by this author
  • Author Footnotes
    # These authors should be regarded as joint first authors.
    Bo Zheng
    Footnotes
    # These authors should be regarded as joint first authors.
    Affiliations
    Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

    Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
    Search for articles by this author
  • Linjun Chen
    Affiliations
    Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

    Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
    Search for articles by this author
  • Zhenyu Diao
    Affiliations
    Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

    Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
    Search for articles by this author
  • Jianjun Zhou
    Correspondence
    Corresponding author.
    Affiliations
    Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

    Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
    Search for articles by this author
  • Author Footnotes
    # These authors should be regarded as joint first authors.
Published:September 20, 2021DOI:https://doi.org/10.1016/j.rbmo.2021.09.008

      Abstract

      Research question

      Is there a simple and effective method for male patients with genetic disorders in families with no identified haplotype and with Robertsonian translocations to avoid the transfer of embryos carrying translocated chromosomes?

      Design

      Single spermatozoa were separated to identify by next-generation sequencing (NGS) those that were genetically abnormal, to establish a sperm-based single-nucleotide polymorphism (SNP) haplotype. Blastocysts that developed to day 5 or 6 were then biopsied for whole genome amplification and screening for chromosomal aneuploidy. Normal embryos were selected by comparison with a single-sperm-based SNP haplotype and were transferred. The results were verified by second trimester amniocentesis.

      Results

      Two blastocysts obtained from patients with neurofibroma type 1 (NF1) were found to be normal after NGS according to single-sperm-based SNP haplotype analysis (13 SNP sites). Three and one blastocysts, respectively, were obtained from the patients with Robertsonian translocation. Blastocysts B9 and B7 were found to be normal after NGS according to the single-sperm-based SNP haplotype analysis (12 and 13 SNP sites selected on chromosomes 14 and 22 for the first patient; 12 and 9 SNP sites selected on chromosomes 13 and 14 for the second patient). Successful pregnancies after blastocyst transfer occurred in all three patients. The identification of embryos was verified by mid-trimester amniocentesis. All three patient couples successfully delivered healthy babies.

      Conclusion

      This study preliminarily summarized the process of single-sperm-based SNP haplotyping, which could be applied as preimplantation genetic testing for male patients without identified disease-causing haplotypes and with Robertsonian translocations.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Altarescu G.
        • Eldar Geva T.
        • Brooks B.
        • Margalioth E.
        • Levy-Lahad E.
        • Renbaum P.
        PGD on a recombinant allele: crossover between the TSC2 gene and ‘linked’ markers impairs accurate diagnosis.
        Prenat.Diagn. 2008; 28: 929-933
        • Chen L.
        • Diao Z.
        • Xu Z.
        • Zhou J.
        • Wang W.
        • Li J.
        • Yan G.
        • Sun H.
        The clinical application of preimplantation genetic diagnosis for the patient affected by congenital contractural arachnodactyly and spinal and bulbar muscular atrophy.
        J.Assist. Reprod. Genet. 2016; 33: 1459-1466
        • Chen L.
        • Diao Z.
        • Xu Z.
        • Zhou J.
        • Yan G.
        • Sun H.
        The clinical application of NGS-based SNP haplotyping for PGD of Hb H disease.
        Syst. Biol. Reprod. 2017; 63: 212-217
        • Chen L.
        • Diao Z.
        • Xu Z.
        • Zhou J.
        • Yan G.
        • Sun H.
        The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.
        Syst. Biol. Reprod. 2019; 65: 75-80
        • Evans D.G.
        • Howard E.
        • Giblin C.
        • Clancy T.
        • Spencer H.
        • Huson S.M.
        • Lalloo F.
        Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service.
        Am.J. Med. Genet.A. 2010; 152A: 327-332
        • Ferner R.E.
        The neurofibromatoses.
        Pract. Neurol. 2010; 10: 82-93
        • Handyside A.H.
        • Harton G.L.
        • Mariani B.
        • Thornhill A.R.
        • Affara N.
        • Shaw M.A.
        • Griffin D.K.
        Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes.
        J.Med.Genet. 2010; 47: 651-658
        • Harper J.C.
        • Wilton L.
        • Traeger-Synodinos J.
        • Goossens V.
        • Moutou C.
        • SenGupta S.B.
        • Pehlivan Budak T.
        • Renwick P.
        • De Rycke M.
        • Geraedts J.P.
        • Harton G.
        The ESHRE PGD Consortium: 10 years of data collection.
        Hum. Reprod. Update. 2012; 18: 234-247
        • Hou Y.
        • Wu K.
        • Shi X.
        • Li F.
        • Song L.
        • Wu H.
        • Dean M.
        • Li G.
        • Tsang S.
        • Jiang R.
        • Zhang R.
        • Li B.
        • Liu G.
        • Bedekar N.
        • Lu N.
        • Xie G.
        • Liang H.
        • Chang L.
        • Wang T.
        • Chen J.
        • Li Y.
        • Zhang X.
        • Yang H.
        • Xu X.
        • Wang L.
        • Wang J.
        Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing.
        Gigascience. 2015; 4: 37
        • Huang S.
        • Juneau K.
        • Bogard P.E.
        • Davies K.A.
        • Wang E.T.
        • Kingsley C.B.
        • Struble C.A.
        • Oliphant A.
        • Zahn J.M.
        • Nicolaides K.H.
        Identifying Robertsonian translocation carriers by microarray-based DNA analysis.
        Fetal Diagn. Ther. 2016; 40: 59-62
        • Konstantinidis M.
        • Prates R.
        • Goodall N.N.
        • Fischer J.
        • Tecson V.
        • Lemma T.
        • Chu B.
        • Jordan A.
        • Armenti E.
        • Wells D.
        • Munné S.
        Live births following karyomapping of human blastocysts: experience from clinical application of the method.
        Reprod. Biomed. Online. 2015; 31: 394-403
        • Liu W.
        • Zhang H.
        • Hu D.
        • Lu S.
        • Sun X.
        The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels.
        J. Clin. Lab. Anal. 2018; 32: e22267
        • Lukaszuk K.
        • Pukszta S.
        • Ochman K.
        • Cybulska C.
        • Liss J.
        • Pastuszek E.
        • Zabielska J.
        • Woclawek-Potocka I.
        Healthy baby born to a Robertsonian translocation carrier following next-generation sequencing-based preimplantation genetic diagnosis: a case report.
        AJP Rep. 2015; 5: e172-e175
        • Natesan S.A.
        • Bladon A.J.
        • Coskun S.
        • Qubbaj W.
        • Prates R.
        • Munne S.
        • Coonen E.
        • Dreesen J.C.
        • Stevens S.J.
        • Paulussen A.D.C.
        • Stock-Myer S.E.
        • Wilton L.J.
        • Jaroudi S.
        • Wells D.
        • Brown A.P.C.
        • Handyside A.H.
        Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro.
        Genet. Med. 2014; 16: 838-845
        • Qubbaj W.
        • Al-Swaid A.
        • Al-Hassan S.
        • Awartani K.
        • Deek H.
        • Coskun S.
        First successful application of preimplantation genetic diagnosis and haplotyping for congenital hyperinsulinism.
        Reprod. Biomed. Online. 2011; 22: 72-79
        • Rechitsky S.
        • Freidine M.
        • Verlinsky Y.
        • Strom C.M.
        Allele dropout in sequential PCR and FISH analysis of single cells (cell recycling).
        J. Assist. Reprod. Genet. 1996; 13: 115-124
        • Ren Y.
        • Zhi X.
        • Zhu X.
        • Huang J.
        • Lian Y.
        • Li R.
        • Jin H.
        • Zhang Y.
        • Zhang W.
        • Nie Y.
        • Wei Y.
        • Liu Z.
        • Song D.
        • Liu P.
        • Qiao J.
        • Yan L.
        Clinical applications of MARSALA for preimplantation genetic diagnosis of spinal muscular atrophy.
        J. Genet. Genomics. 2016; 43: 541-547
        • Shamash J.
        • Rienstein S.
        • Wolf-Reznik H.
        • Pras E.
        • Dekel M.
        • Litmanovitch T.
        • Brengauz M.
        • Goldman B.
        • Yonath H.
        • Dor J.
        • Levron J.
        • Aviram-Goldring A.
        Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos – preliminary observations of two Robertsonian translocation carrier families.
        J. Assist. Reprod. Genet. 2011; 28: 77-83
        • Theobald R.
        • SenGupta S.
        • Harper J.
        The status of preimplantation genetic testing in the UK and USA.
        Hum. Reprod. 2020; 35: 986-998
        • Thornhill A.R.
        • Handyside A.H.
        • Ottolini C.
        • Natesan S.A.
        • Taylor J.
        • Sage K.
        • Harton G.
        • Cliffe K.
        • Affara N.
        • Konstantinidis M.
        • Wells D.
        • Griffin D.K.
        Karyomapping – a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome.
        J. Assist. Reprod. Genetics. 2015; 32: 347-356
        • Treff N.R.
        • Zimmerman R.S.
        Advances in preimplantation genetic testing for monogenic disease and aneuploidy.
        Annu. Rev. Genomics Hum. Genet. 2017; 18: 189-200
        • Upadhyaya M.
        Genetic basis of tumorigenesis in NF1 malignant peripheral nerve sheath tumors.
        Front.Biosci.(Landmark Ed.). 2011; 16: 937-951
        • Wang B.
        • Nie B.
        • Tang D.
        • Li R.
        • Liu X.
        • Song J.
        • Wang W.
        • Liu Z.
        Analysis of meiotic segregation patterns and interchromosomal effects in sperm from 13 Robertsonian translocations.
        Balkan J. Med. Genet. 2017; 20: 43-50
        • Wilton L.
        • Thornhill A.
        • Traeger-Synodinos J.
        • Sermon K.D.
        • Harper J.C.
        The causes of misdiagnosis and adverse outcomes in PGD.
        Hum. Reprod. 2009; 24: 1221-1228
        • Wu H.
        • Shen X.
        • Huang L.
        • Zeng Y.
        • Gao Y.
        • Shao L.
        • Lu B.
        • Zhong Y.
        • Miao B.
        • Xu Y.
        • Wang Y.
        • Li Y.
        • Xiong L.
        • Lu S.
        • Xie X.S.
        • Zhou C.
        Genotyping single-sperm cells by universal MARSALA enables the acquisition of linkage information for combined pre-implantation genetic diagnosis and genome screening.
        J. Assist. Reprod. Genet. 2018; 35: 1071-1078
        • Xie Y.
        • Xu Y.
        • Wang J.
        • Miao B.
        • Zeng Y.
        • Ding C.
        • Gao J.
        • Zhou C.
        Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.
        J. Assist. Reprod. Genet. 2018; 35: 177-186
        • Zamani Esteki M.
        • Dimitriadou E.
        • Mateiu L.
        • Melotte C.
        • Van der Aa N.
        • Kumar P.
        • Das R.
        • Theunis K.
        • Cheng J.
        • Legius E.
        • Moreau Y.
        • Debrock S.
        • D'Hooghe T.
        • Verdyck P.
        • De Rycke M.
        • Sermon K.
        • Vermeesch J.R.
        • Voet T.
        Concurrent whole-genome haplotyping and copy-number profiling of single cells.
        Am. J. Hum. Genet. 2015; 96: 894-912

      Biography

      Chenyang Huang is a Reproductive Medicine Clinician. He has been a practitioner at the Reproductive Medicine Center of Nanjing Drum Tower Hospital since 2017. He has been a co-investigator in some clinical trials and published several papers associated with reproductive medicine and endometrial receptivity.
      Key message
      Single-sperm-based single nucleotide polymorphism (SNP) haplotyping can be employed as preimplantation genetic testing (PGT) for male patients with monogenic diseases or Robertsonian translocations. This method is able to effectively solve the problem of male patients without disease-causing haplotypes and avoid the transfer of embryos carrying translocated chromosomes.