Advertisement

Dwarf mice as models for reproductive ageing research

  • Yujun Liu
    Affiliations
    Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China

    National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China

    Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China
    Search for articles by this author
  • Michal M. Masternak
    Affiliations
    Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA

    Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
    Search for articles by this author
  • Augusto Schneider
    Affiliations
    Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
    Search for articles by this author
  • Xu Zhi
    Correspondence
    Corresponding author.
    Affiliations
    Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China

    National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China

    Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China
    Search for articles by this author
Published:October 03, 2021DOI:https://doi.org/10.1016/j.rbmo.2021.09.016

      Abstract

      Dwarf mice are characterized by extremely long lifespan, delayed ovarian ageing, altered metabolism, lower age-related oxidative damage and cancer incidence rate. Snell dwarf, Ames dwarf and growth hormone receptor knockout mice are three commonly used models. Despite studies focusing on ageing and metabolism, the reproductive features of female dwarf mice have also attracted interest over the last decade. Female Snell and Ames dwarf mice have regular oestrous cycles and ovulation rates, as in normal mice, but with a larger ovarian reserve and delayed ovarian ageing. The primordial follicle reserve in dwarf mice is greater than in normal littermates. Anti-Müllerian hormone (AMH) concentration is seven times higher in Ames dwarf mice than in their normal siblings, and ovarian transcriptomic profiling showed distinctive patterns in older Ames dwarf mice, especially enriched in inflammatory and immune response-related pathways. In addition, microRNA profiles also showed distinctive differences in Ames dwarf mice compared with normal control littermates. This review aims to summarize research progress on dwarf mice as models in the reproductive ageing field. Investigations focusing on the mechanisms of their reserved reproductive ability are much needed and are expected to provide additional molecular biological bases for the clinical practice of reproductive medicine in women.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Adhikari D.
        • Liu K.
        mTOR signaling in the control of activation of primordial follicles.
        Cell Cycle. 2010; 9: 1673-1674
        • Advis J.P.
        • White S.S.
        • Ojeda S.R.
        Activation of growth hormone short loop negative feedback delays puberty in the female rat.
        Endocrinology. 1981; 108: 1343-1352
        • Andersen B.
        • Rosenfeld M.G.
        POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease.
        Endocr. Rev. 2001; 22: 2-35
        • Andersen B.
        • Pearse 2nd, R.V.
        • Jenne K.
        • Sornson M.
        • Lin S.C.
        • Bartke A.
        • Rosenfeld M.G
        The Ames dwarf gene is required for Pit-1 gene activation.
        Dev. Biol. 1995; 172: 495-503
        • Apa R.
        • Lanzone A.
        • Miceli F.
        • Mastrandrea M.
        • Caruso A.
        • Mancuso S.
        • Canipari R.
        Growth hormone induces in vitro maturation of follicle- and cumulus-enclosed rat oocytes.
        Mol. Cell Endocrinol. 1994; 106: 207-212
        • Baker T.G.
        A quantitative and cytological study of germ cells in human ovaries.
        Proc. R. Soc. Lond. B. Biol. Sci. 1963; 158: 417-433
        • Bartke A.
        Histology of the anterior hypophysis, thyroid and gonads of two types of dwarf mice.
        Anat. Rec. 1964; 149: 225-235
        • Bartke A.
        Influence of luteotrophin on fertility of dwarf mice.
        J. Reprod. Fertil. 1965; 10: 93-103
        • Bartke A.
        Role of growth hormone and prolactin in the control of reproduction: what are we learning from transgenic and knock-out animals?.
        Steroids. 1999; 64: 598-604
        • Bartke A.
        • Klemcke H.
        • Matt K.
        Effects of physiological and abnormally elevated prolactin levels on the pituitary-testicular axis.
        Med. Biol. 1986; 63: 264-272
        • Bartke A.
        • Brown-Borg H.
        • Mattison J.
        • Kinney B.
        • Hauck S.
        • Wright C.
        Prolonged longevity of hypopituitary dwarf mice.
        Exp. Gerontol. 2001; 36: 21-28
        • Brannstrom M.
        • Mayrhofer G.
        • Robertson S.A.
        Localization of leukocyte subsets in the rat ovary during the periovulatory period.
        Biol. Reprod. 1993; 48: 277-286
        • Brown-Borg H.M.
        • Bartke A.
        GH and IGF1: roles in energy metabolism of long-living GH mutant mice.
        J. Gerontol. A. Biol. Sci. Med. Sci. 2012; 67: 652-660
        • Brown-Borg H.M.
        • Borg K.E.
        • Meliska C.J.
        • Bartke A.
        Dwarf mice and the ageing process.
        Nature. 1996; 384: 33
        • Camper S.A.
        • Saunders T.L.
        • Katz R.W.
        • Reeves R.H.
        The Pit-1 transcription factor gene is a candidate for the murine Snell dwarf mutation.
        Genomics. 1990; 8: 586-590
        • Cantley L.C.
        The phosphoinositide 3-kinase pathway.
        Science. 2002; 296: 1655-1657
        • Castrillon D.H.
        • Miao L.
        • Kollipara R.
        • Horner J.W.
        • DePinho R.A.
        Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a.
        Science. 2003; 301: 215-218
        • Cohen L.E.
        • Wondisford F.E.
        • Radovick S.
        Role of Pit-1 in the gene expression of growth hormone, prolactin, and thyrotropin.
        Endocrinol. Metab. Clin. North Am. 1996; 25: 523-540
        • Cooke P.S.
        • Holsberger D.R.
        • Witorsch R.J.
        • Sylvester P.W.
        • Meredith J.M.
        • Treinen K.A.
        • Chapin R.E.
        Thyroid hormone, glucocorticoids, and prolactin at the nexus of physiology, reproduction, and toxicology.
        Toxicol. Appl. Pharmacol. 2004; 194: 309-335
        • Coschigano K.T.
        • Clemmons D.
        • Bellush L.L.
        • Kopchick J.J.
        Assessment of growth parameters and life span of GHR/BP gene-disrupted mice.
        Endocrinology. 2000; 141: 2608-2613
        • Danilovich N.
        • Wernsing D.
        • Coschigano K.T.
        • Kopchick J.J.
        • Bartke A.
        Deficits in female reproductive function in GH-R-KO mice; role of IGF-I.
        Endocrinology. 1999; 140: 2637-2640
        • Darcy J.
        • Bartke A.
        Functionally enhanced brown adipose tissue in Ames dwarf mice.
        Adipocyte. 2017; 6: 62-67
        • Darcy J.
        • McFadden S.
        • Bartke A.
        Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations.
        Adipocyte. 2017; 6: 69-75
        • Darendeliler F.
        • Hindmarsh P.C.
        • Preece M.A.
        • Cox L.
        • Brook C.G.
        Growth hormone increases rate of pubertal maturation.
        Acta Endocrinol. (Copenh). 1990; 122: 414-416
        • Depmann M.
        • Broer S.L.
        • van der Schouw Y.T.
        • Tehrani F.R.
        • Eijkemans M.J.
        • Mol B.W.
        • Broekmans F.J.
        Can we predict age at natural menopause using ovarian reserve tests or mother's age at menopause? A systematic literature review.
        Menopause. 2016; 23: 224-232
        • de Reviers M.M.
        Sequential effects of FSH on the first stages of ovarian follicular development in normal and dwarf Snell mice.
        Acta Endocrinologica. 1988; 117: 26-32
        • de Reviers M.M.
        • Viguier-Martinez M.C.
        • Mariana J.C.
        FSH, LH and prolactin levels, ovarian follicular development and responsiveness to FSH in the Snell dwarf mouse.
        Acta Endocrinologica. 1984; 106: 121-126
        • DiMattia G.E.
        • Rhodes S.J.
        • Krones A.
        • Carriere C.
        • O'Connell S.
        • Kalla K.
        • Arias C.
        • Sawchenko P.
        • Rosenfeld M.G.
        The Pit-1 gene is regulated by distinct early and late pituitary-specific enhancers.
        Dev. Biol. 1997; 182: 180-190
        • Dissen G.A.
        • Hirshfield A.N.
        • Malamed S.
        • Ojeda S.R.
        Expression of neurotrophins and their receptors in the mammalian ovary is developmentally regulated: changes at the time of folliculogenesis.
        Endocrinology. 1995; 136: 4681-4692
        • Dissen G.A.
        • Romero C.
        • Hirshfield A.N.
        • Ojeda S.R.
        Nerve growth factor is required for early follicular development in the mammalian ovary.
        Endocrinology. 2001; 142: 2078-2086
        • Dong J.
        • Albertini D.F.
        • Nishimori K.
        • Kumar T.R.
        • Lu N.
        • Matzuk M.M.
        Growth differentiation factor-9 is required during early ovarian folliculogenesis.
        Nature. 1996; 383: 531-535
        • Doufas A.G.
        • Mastorakos G.
        The hypothalamic-pituitary-thyroid axis and the female reproductive system.
        Ann. N. Y. Acad. Sci. 2000; 900: 65-76
        • Dube J.L.
        • Wang P.
        • Elvin J.
        • Lyons K.M.
        • Celeste A.J.
        • Matzuk M.M.
        The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes.
        Mol. Endocrinol. 1998; 12: 1809-1817
        • Durlinger A.L.
        • Kramer P.
        • Karels B.
        • de Jong F.H.
        • Uilenbroek J.T.
        • Grootegoed J.A.
        • Themmen A.P
        Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary.
        Endocrinology. 1999; 140: 5789-5796
        • Foshay K.M.
        • Gallicano G.I.
        miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation.
        Dev. Biol. 2009; 326: 431-443
        • Freeman M.E.
        • Kanyicska B.
        • Lerant A.
        • Nagy G.
        Prolactin: structure, function, and regulation of secretion.
        Physiol. Rev. 2000; 80: 1523-1631
        • Gerhard I.
        • Becker T.
        • Eggert-Kruse W.
        • Klinga K.
        • Runnebaum B.
        Thyroid and ovarian function in infertile women.
        Hum. Reprod. 1991; 6: 338-345
        • Gosden R.G.
        • Faddy M.J.
        Ovarian aging, follicular depletion, and steroidogenesis.
        Exp. Gerontol. 1994; 29: 265-274
        • Henemyre C.
        • Markoff E.
        Decidualization and expression of insulin-like growth factor-I and insulin-like growth factor binding protein-4 in the periimplantation mouse uterus.
        Biol. Reprod. 1998; 58: 801-806
        • Hsu C.J.
        • Hammond J.M.
        Concomitant effects of growth hormone on secretion of insulin-like growth factor I and progesterone by cultured porcine granulosa cells.
        Endocrinology. 1987; 121: 1343-1348
        • Hunter W.S.
        • Croson W.B.
        • Bartke A.
        • Gentry M.V.
        • Meliska C.J.
        Low body temperature in long-lived Ames dwarf mice at rest and during stress.
        Physiol. Behav. 1999; 67: 433-437
        • Isola J.V.V.
        • Zanini B.M.
        • Sidhom S.
        • Kopchick J.J.
        • Bartke A.
        • Masternak M.M.
        • Stout M.B.
        Schneider, A. 17alpha-estradiol promotes ovarian aging in growth hormone receptor knockout mice, but not wild-type littermates.
        Exp. Gerontol. 2020; 129110769
        • Jia X.C.
        • Kalmijn J.
        • Hsueh A.J.
        Growth hormone enhances follicle-stimulating hormone-induced differentiation of cultured rat granulosa cells.
        Endocrinology. 1986; 118: 1401-1409
        • Kevenaar M.E.
        • Meerasahib M.F.
        • Kramer P.
        • van de Lang-Born B.M.
        • de Jong F.H.
        • Groome N.P.
        • Themmen A.P.
        • Visser J.A.
        Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice.
        Endocrinology. 2006; 147: 3228-3234
        • Laron Z.
        • Pertzelan A.
        • Mannheimer S.
        Genetic pituitary dwarfism with high serum concentation of growth hormone – a new inborn error of metabolism?.
        Isr. J. Med. Sci. 1966; 2: 152-155
        • Li S.
        • Crenshaw 3rd, E.B.
        • Rawson E.J.
        • Simmons D.M.
        • Swanson L.W.
        • Rosenfeld M.G
        Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1.
        Nature. 1990; 347: 528-533
        • Lighten A.D.
        • Moore G.E.
        • Winston R.M.
        • Hardy K.
        Routine addition of human insulin-like growth factor-I ligand could benefit clinical in-vitro fertilization culture.
        Hum. Reprod. 1998; 13: 3144-3150
        • Maruo T.
        • Hiramatsu S.
        • Otani T.
        • Hayashi M.
        • Mochizuki M.
        Increase in the expression of thyroid hormone receptors in porcine granulosa cells early in follicular maturation.
        Acta Endocrinol. (Copenh.). 1992; 127: 152-160
        • Masternak M.M.
        • Darcy J.
        • Victoria B.
        • Bartke A.
        Dwarf mice and aging.
        Prog. Mol. Biol. Transl. Sci. 2018; 155: 69-83
        • McGrath S.A.
        • Esquela A.F.
        • Lee S.J.
        Oocyte-specific expression of growth/differentiation factor-9.
        Mol. Endocrinol. 1995; 9: 131-136
        • Mogilyansky E.
        • Rigoutsos I.
        The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease.
        Cell Death Differ. 2013; 20: 1603-1614
        • Munakata Y.
        • Ueda M.
        • Kawahara-Miki R.
        • Kansaku K.
        • Itami N.
        • Shirasuna K.
        • Kuwayama T.
        • Iwata H.
        Follicular factors determining granulosa cell number and developmental competence of porcine oocytes.
        J. Assist. Reprod. Genet. 2018; 35: 1809-1819
        • Murphy B.D.
        • Rajkumar K.
        Prolactin as a luteotrophin.
        Can. J. Physiol. Pharmacol. 1985; 63: 257-264
        • Mutz K.O.
        • Heilkenbrinker A.
        • Lonne M.
        • Walter J.G.
        • Stahl F.
        Transcriptome analysis using next-generation sequencing.
        Curr. Opin. Biotechnol. 2013; 24: 22-30
        • Myers M.
        • Britt K.L.
        • Wreford N.G.
        • Ebling F.J.
        • Kerr J.B.
        Methods for quantifying follicular numbers within the mouse ovary.
        Reproduction. 2004; 127: 569-580
        • Pangas S.A.
        • Choi Y.
        • Ballow D.J.
        • Zhao Y.
        • Westphal H.
        • Matzuk M.M.
        • Rajkovic A.
        Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8.
        Proc. Natl. Acad. Sci. U S A. 2006; 103: 8090-8095
        • Petrovska M.
        • Dimitrov D.G.
        • Michael S.D.
        Quantitative changes in macrophage distribution in normal mouse ovary over the course of the estrous cycle examined with an image analysis system.
        Am. J. Reprod. Immunol. 1996; 36: 175-183
        • Podlutsky A.
        • Valcarcel-Ares M.N.
        • Yancey K.
        • Podlutskaya V.
        • Nagykaldi E.
        • Gautam T.
        • Miller R.A.
        • Sonntag W.E.
        • Csiszar A.
        • Ungvari Z.
        The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer.
        Geroscience. 2017; 39: 147-160
        • Poppe K.
        • Glinoer D.
        Thyroid autoimmunity and hypothyroidism before and during pregnancy.
        Hum. Reprod. Update. 2003; 9: 149-161
        • Rajkovic A.
        • Pangas S.A.
        • Ballow D.
        • Suzumori N.
        • Matzuk M.M.
        NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression.
        Science. 2004; 305: 1157-1159
        • Reddy P.
        • Liu L.
        • Adhikari D.
        • Jagarlamudi K.
        • Rajareddy S.
        • Shen Y.
        • Du C.
        • Tang W.
        • Hamalainen T.
        • Peng S.L.
        • Lan Z.J.
        • Cooney A.J.
        • Huhtaniemi I.
        • Liu K.
        Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool.
        Science. 2008; 319: 611-613
        • Rhodes S.J.
        • DiMattia G.E.
        • Rosenfeld M.G.
        Transcriptional mechanisms in anterior pituitary cell differentiation.
        Curr. Opin. Genet. Dev. 1994; 4: 709-717
        • Rosenfeld R.G.
        • Rosenbloom A.L.
        • Guevara-Aguirre J.
        Growth hormone (GH) insensitivity due to primary GH receptor deficiency.
        Endocr. Rev. 1994; 15: 369-390
        • Saccon T.D.
        • Moreira F.
        • Cruz L.A.
        • Mondadori R.G.
        • Fang Y.
        • Barros C.C.
        • Spinel L.
        • Bartke A.
        • Masternak M.M.
        • Schneider A.
        Ovarian aging and the activation of the primordial follicle reserve in the long-lived Ames dwarf and the short-lived bGH transgenic mice.
        Mol. Cell Endocrinol. 2017; 455: 23-32
        • Saccon T.D.
        • Rovani M.T.
        • Garcia D.N.
        • Mondadori R.G.
        • Cruz L.A.X.
        • Barros C.C.
        • Bartke A.
        • Masternak M.M.
        • Schneider A.
        Primordial follicle reserve, DNA damage and macrophage infiltration in the ovaries of the long-living Ames dwarf mice.
        Exp. Gerontol. 2020; 132110851
        • Sanchez F.
        • Smitz J.
        Molecular control of oogenesis.
        Biochim. Biophys. Acta. 2012; 1822: 1896-1912
        • Sauerwein H.
        • Breier B.H.
        • Gallaher B.W.
        • Gotz C.
        • Kufner G.
        • Montag T.
        • Vickers M.
        • Schallenberger E.
        Growth hormone treatment of breeding bulls used for artificial insemination improves fertilization rates.
        Domest. Anim. Endocrinol. 2000; 18: 145-158
        • Schaible R.
        • Gowen J.W.
        A new dwarf mouse.
        Genetics. 1961; 46: 896
        • Schmidt K.L.
        • Kryger-Baggesen N.
        • Byskov A.G.
        • Andersen C.Y.
        Anti-Mullerian hormone initiates growth of human primordial follicles in vitro.
        Mol. Cell Endocrinol. 2005; 234: 87-93
        • Schneider A.
        • Zhi X.
        • Bartke A.
        • Kopchick J.J.
        • Masternak M.M.
        Effect of growth hormone receptor gene disruption and PMA treatment on the expression of genes involved in primordial follicle activation in mice ovaries.
        Age (Dordr.). 2014; 36: 9701
        • Schneider A.
        • Zhi X.
        • Moreira F.
        • Lucia Jr., T.
        • Mondadori R.G.
        • Masternak M.M
        Primordial follicle activation in the ovary of Ames dwarf mice.
        J. Ovarian Res. 2014; 7: 120
        • Schneider A.
        • Matkovich S.J.
        • Victoria B.
        • Spinel L.
        • Bartke A.
        • Golusinski P.
        • Masternak M.M.
        Changes of ovarian microRNA profile in long-living Ames dwarf mice during aging.
        PLoS One. 2017; 12e0169213
        • Schneider A.
        • Matkovich S.J.
        • Saccon T.
        • Victoria B.
        • Spinel L.
        • Lavasani M.
        • Bartke A.
        • Golusinski P.
        • Masternak M.M.
        Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice.
        Mol. Cell Endocrinol. 2017; 439: 328-336
        • Snell G.D.
        Dwarf, a new mendelian recessive character of the house mouse.
        Proc. Natl. Acad. Sci. USA. 1929; 15: 733-734
        • Sornson M.W.
        • Wu W.
        • Dasen J.S.
        • Flynn S.E.
        • Norman D.J.
        • O'Connell S.M.
        • Gukovsky I.
        • Carriere C.
        • Ryan A.K.
        • Miller A.P.
        • Zuo L.
        • Gleiberman A.S.
        • Andersen B.
        • Beamer W.G.
        • Rosenfeld M.G
        Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism.
        Nature. 1996; 384: 327-333
        • Stout M.B.
        • Swindell W.R.
        • Zhi X.
        • Rohde K.
        • List E.O.
        • Berryman D.E.
        • Kopchick J.J.
        • Gesing A.
        • Fang Y.
        • Masternak M.M.
        Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice.
        Oncotarget. 2015; 6: 26702-26715
        • Takeda Y.
        • Iwashita M.
        Role of growth factors on fetal growth and maturation.
        Ann. Acad. Med. Singapore. 1993; 22: 134-141
        • Vergara M.
        • Smith-Wheelock M.
        • Harper J.M.
        • Sigler R.
        • Miller R.A.
        Hormone-treated snell dwarf mice regain fertility but remain long lived and disease resistant.
        J. Gerontol. A. Biol. Sci. Med. Sci. 2004; 59: 1244-1250
        • Vollenhoven B.
        • Hunt S.
        Ovarian ageing and the impact on female fertility.
        F1000Res. 2018; 7: F1000
        • Yang S.
        • Wang S.
        • Luo A.
        • Ding T.
        • Lai Z.
        • Shen W.
        • Ma X.
        • Cao C.
        • Shi L.
        • Jiang J.
        • Rong F.
        • Ma L.
        • Tian Y.
        • Du X.
        • Lu Y.
        • Li Y.
        • Wang S.
        Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary.
        Biol. Reprod. 2013; 89: 126
        • Zaczek D.
        • Hammond J.
        • Suen L.
        • Wandji S.
        • Service D.
        • Bartke A.
        • Chandrashekar V.
        • Coschigano K.
        • Kopchick J.
        Impact of growth hormone resistance on female reproductive function: new insights from growth hormone receptor knockout mice.
        Biol. Reprod. 2002; 67: 1115-1124
        • Zhou Y.
        • Xu B.C.
        • Maheshwari H.G.
        • He L.
        • Reed M.
        • Lozykowski M.
        • Okada S.
        • Cataldo L.
        • Coschigamo K.
        • Wagner T.E.
        • Baumann G.
        • Kopchick J.J
        A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).
        Proc. Natl. Acad. Sci. USA. 1997; 94: 13215-13220

      Biography

      Zhi Xu, MD, PhD is Associate Professor, Clinician and Master Instructor of the Center for Reproductive Medicine of Peking University Third Hospital. Dr Zhi has published 31 papers included by SCI, with a total impact factor of 184.845. She is the Project Leader of the National Natural Science Foundation of China.
      Key message
      An introduction to three kinds of dwarf mice and their characteristics, including extended lifespan, delayed ovarian ageing, altered metabolism, lower age-related oxidative damage and cancer incidence rates. In particular, this review summarizes their reproductive features and potential animal models for reproductive ageing research.