Advertisement

Ovarian inflammatory mRNA profiles of a dehydroepiandrosterone plus high-fat diet-induced polycystic ovary syndrome mouse model

  • Author Footnotes
    # These authors contributed equally to this work and should be considered first authors.
    Amin Ullah
    Footnotes
    # These authors contributed equally to this work and should be considered first authors.
    Affiliations
    Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University Chongqing, PR China

    Department of Reproductive Sciences, School of Public Health, Chongqing Medical University Chongqing, PR China
    Search for articles by this author
  • Author Footnotes
    # These authors contributed equally to this work and should be considered first authors.
    Mei-Jiao Wang
    Correspondence
    Corresponding authors.
    Footnotes
    # These authors contributed equally to this work and should be considered first authors.
    Affiliations
    Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University Chongqing, PR China

    Department of Physiology, School of Basic Medicine, Chongqing Medical University Chongqing, PR China
    Search for articles by this author
  • Jun-Pu Yang
    Affiliations
    Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University Chongqing, PR China

    Department of Physiology, School of Basic Medicine, Chongqing Medical University Chongqing, PR China
    Search for articles by this author
  • Enoch Appiah Adu-Gyamfi
    Affiliations
    Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University Chongqing, PR China

    Department of Reproductive Sciences, School of Public Health, Chongqing Medical University Chongqing, PR China
    Search for articles by this author
  • Armin Czika
    Affiliations
    Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University Chongqing, PR China

    Department of Reproductive Sciences, School of Public Health, Chongqing Medical University Chongqing, PR China
    Search for articles by this author
  • Sanjay Kumar Sah
    Affiliations
    Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University Chongqing, PR China

    Department of Reproductive Sciences, School of Public Health, Chongqing Medical University Chongqing, PR China
    Search for articles by this author
  • Qian Feng
    Affiliations
    Chongqing Hospital of Traditional Chinese Medicine Chongqing, PR China
    Search for articles by this author
  • Ying-Xiong Wang
    Correspondence
    Corresponding authors.
    Affiliations
    Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University Chongqing, PR China

    Department of Physiology, School of Basic Medicine, Chongqing Medical University Chongqing, PR China
    Search for articles by this author
  • Author Footnotes
    # These authors contributed equally to this work and should be considered first authors.
Published:November 10, 2021DOI:https://doi.org/10.1016/j.rbmo.2021.10.024

      Abstract

      Research question

      What is the expression pattern of inflammatory mRNA profiles of a dehydroepiandrosterone (DHEA) plus high-fat diet (HFD)-induced polycystic ovary syndrome (PCOS) mouse model?

      Design

      RNA sequencing was performed to investigate the mRNA expression profiles in the ovarian tissues of a DHEA plus HFD-induced PCOS mouse model. Six samples were divided into two groups (control and PCOS), with three biological replicates in each group. This was followed by hierarchical clustering, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The relative expression levels of nine inflammatory genes were validated via quantitative reverse-transcription polymerase chain reaction.

      Results

      A total of 436 genes were differentially expressed between the control and PCOS mice. Out of these, 137 genes were up-regulated while 299 genes were down-regulated. Gene ontology analysis indicated that differentially expressed mRNA were associated with T cell-mediated cytotoxicity and homocysteine metabolic processes. Pathway analysis further showed that these abnormally expressed mRNA were associated with signalling pathways, such as NF-kB signalling, tyrosine metabolism and phenylalanine metabolism. All these pathways are involved in chronic inflammation and PCOS.

      Conclusion

      The differentially expressed genes are potentially involved in the inflammation that is evident in PCOS, and so could serve as therapeutic options against the disease. Nevertheless, prospective studies are needed to test this hypothesis.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ackert C.L.
        • Gittens J.E.I.
        • Brien M.J.O.
        • Eppig J.J.
        • Kidder G.M.
        Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse.
        Dev. Biol. 2001; 270: 258-270https://doi.org/10.1006/dbio.2001.0216
        • Adams J.
        • Liu Z.
        • Ren Y.A.
        • Wun W.S.
        • Zhou W.
        • Kenigsberg S.
        • Librach C.
        • Valdes C.
        • Gibbons W.
        • Richards J.A.
        Enhanced inflammatory transcriptome in the granulosa cells of women with polycystic ovarian syndrome.
        J. Clin. Endocrinol. Metab. 2016; 101: 3459-3468https://doi.org/10.1210/jc.2015-4275
        • Adu-Gyamfi E.A.
        • Czika A.
        • Gorleku P.N.
        • Ullah A.
        • Panhwar Z.
        • Ruan L.L.
        • Ding Y.
        • Bin Wang, Y.X.
        The involvement of cell adhesion molecules, tight junctions, and gap junctions in human placentation.
        Reprod. Sci. 2020; 28: 305-320https://doi.org/10.1007/s43032-020-00364-7
        • Aghajanova L.
        Update on the role of leukemia inhibitory factor in assisted reproduction.
        Curr. Opin. Obstet. Gynecol. 2010; 22: 213-219https://doi.org/10.1097/GCO.0b013e32833848e5
        • Ahmed H.H.
        • Morcos N.Y.S.
        • Eskander E.F.
        • Seoudi D.M.S.
        • Shalby A.B.
        Role of dehydroepiandrosterone in management of glucocorticoid-induced secondary osteoporosis in female rats.
        Exp. Toxicol. Pathol. 2011; 64: 659-664https://doi.org/10.1016/j.etp.2011.01.004
        • Anders H.
        • Lech M.
        NOD-like and Toll-like receptors or inflammasomes contribute to kidney disease in a canonical and a non-canonical manner.
        Kidney Int. 2013; 84: 225-228https://doi.org/10.1038/ki.2013.122
        • Ansari R.M.
        Potential use of durian fruit (Durio zibenthinus Linn) as an adjunct to treat infertility in polycystic ovarian syndrome.
        J. Integr. Med. 2016; 14: 22-28https://doi.org/10.1016/S2095-4964(16)60240-6
        • Atiomo W.
        • Nasir M.
        • Chapman C.
        • Metzler V.M.
        • Abouzeid J.
        • Latif A.
        • Chadwick A.
        • Kitson S.
        • Sivalingam V.N.
        • Stratford I.J.
        • Rutland C.S.
        • Persson J.L.
        • Fuentes-Utrilla N.Ø.P.
        • Jeyapalan J.N.
        • Heery D.M.
        • Crosbie E.J.
        • Mongan N.P.
        Expression of NAD(P)H quinone dehydrogenase 1 (NQO1) is increased in the endometrium of women with endometrial cancer and women with polycystic ovary syndrome.
        Clin. Endocrinol. (Oxf). 2017; 87: 557-565https://doi.org/10.1111/cen.13436
        • Belgorosky D.
        • Analía Sander V.
        • Di Yorio M.P.
        • Faletti A.G.
        • Motta A.B.
        Hyperandrogenism alters intraovarian parameters during early folliculogenesis in mice.
        Reprod. Biomed. Online. 2010; 20: 797-807https://doi.org/10.1016/j.rbmo.2010.02.012
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate – a practical and powerful approach to multiple testing.
        J. Royal Statist. Soc., Series B. 1995; 57: 289-300https://doi.org/10.2307/2346101
        • Benrick A.
        • Chanclón B.
        • Micallef P.
        • Wu Y.
        • Hadi L.
        • Shelton J.M.
        Adiponectin protects against development of metabolic disturbances in a PCOS mouse model.
        Proc. Natl. Acad. Sci. U S A. 2017; 114: E7187-E7196https://doi.org/10.1073/pnas.1708854114
        • Bhela S.
        • Kempsell C.
        • Manohar M.
        • Dominguez-Villar M.
        • Griffin R.
        • Bhatt P.
        • Kivisakk-Webb P.
        • Fuhlbrigge R.
        • Kupper T.
        • Weiner H.
        • Baecher-Allan C.
        Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DRCD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6.
        J. Immunol. 2015; 194: 2180-2189https://doi.org/10.4049/jimmunol.1303257
        • Boots C.E.
        • Jungheim E.S.
        Inflammation and human ovarian follicular dynamics.
        Semin. Reprod. Med. 2015; 1: 270-275https://doi.org/10.1055/s-0035-1554928
        • Brothers K.J.
        • Wu S.
        • Divall S.A.
        • Messmer M.R.
        • Kahn C.R.
        • Miller R.S.
        • Radovick S.
        • Wondisford F.E.
        • Wolfe A.
        Rescue of obesity-induced infertility in female mice due to a pituitary-specific knockout of the insulin receptor.
        Cell. Metab. 2010; 12: 295-305https://doi.org/10.1016/j.cmet.2010.06.010
        • Brunet L.J.
        • Stewart C.L.
        Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation.
        Proc. Natl. Acad. Sci. U S A. 1991; 88: 11408-11412https://doi.org/10.1073/pnas.88.24.11408
        • Burger H.G.
        Androgen production in women.
        Fertil. Steril. 2002; 77: 1-4https://doi.org/10.1201/b14632-2
        • Cereijo R.
        • Gavaldà-Navarro A.
        • Cairó M.
        • Quesada-López T.
        • Villarroya J.
        • Morón-Ros S.
        • Sánchez-Infantes D.
        • Peyrou M.
        • Iglesias R.
        • Mampel T.
        • Turatsinze J.-V.
        • Eizirik D.L.
        • Giralt M.
        • Villarroya F.
        CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation.
        Cell. Metab. 2018; 28: 750-763https://doi.org/10.1016/j.cmet.2018.07.015
        • Chang H.
        • Xie L.
        • Ge H.
        • Wu Q.
        • Wen Y.
        • Zhang D.
        • Zhang Y.
        • Ma H.
        • Gao J.
        • Wang C.C.
        • Stener-Victorin E.
        • Ng E.H.
        • Wu X.
        Effects of hyperhomocysteinaemia and metabolic syndrome on reproduction in women with polycystic ovary syndrome: a secondary analysis.
        Reprod. Biomed. Online. 2019; 38: 990-998https://doi.org/10.1016/j.rbmo.2018.12.046
        • Chazenbalk G.
        • Chen Y.H.
        • Heneidi S.
        • Lee J.M.
        • Pall M.
        • Chen Y.D.I.
        • Azziz R.
        Abnormal expression of genes involved in inflammation, lipid metabolism, and Wnt signaling in the adipose tissue of polycystic ovary syndrome.
        J. Clin. Endocrinol. Metab. 2012; 97: 765-770https://doi.org/10.1210/jc.2011-2377
        • Chen J.
        • Tang X.
        • Zhang Y.
        • Ma H.
        • Zou S.
        Effects of maternal treatment of dehydroepiandrosterone (DHEA) on serum lipid profile and hepatic lipid metabolism-related gene expression in embryonic chickens.
        Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 2010; 155: 380-386https://doi.org/10.1016/j.cbpb.2009.12.005
        • Chen X.
        • Lu T.
        • Wang X.
        • Sun X.
        • Zhang J.
        • Zhou K.
        • Ji X.
        • Sun R.
        • Wang X.
        • Chen M.
        • Ling X.
        Metabolic alterations associated with polycystic ovary syndrome: a UPLC Q-Exactive based metabolomic study.
        Clin. Chim. Acta. 2019; 502: 280-286https://doi.org/10.1016/j.cca.2019.11.016
        • Corbett H.E.
        • Dubé C.D.
        • Slow S.
        • Lever M.
        • Trasler J.M.
        • Baltz J.M.
        Uptake of betaine into mouse cumulus–oocyte complexes via the SLC7A6 isoform of y+L transporter.
        Biol. Reprod. 2014; 90: 1-9https://doi.org/10.1095/biolreprod.113.116939
        • de Alencar J.B.
        • Alves H.V.
        • Elpidio L.N.
        • Visentainer J.E.
        • Sell A.M.
        Polymorphisms of cytokine genes and polycystic ovary syndrome.
        Metab. Syndr. Relat. Disord. 2016; 14: 468-474https://doi.org/10.1089/met.2016.0101
        • Diao F.
        • Xu M.
        • Hu Y.
        • Li J.
        • Xu Z.
        • Lin M.
        • Wang L.
        • Zhou Y.
        • Zhou Z.
        • Liu J.
        • Sha J.
        The molecular characteristics of polycystic ovary syndrome (PCOS) ovary defined by human ovary cDNA microarray.
        J. Mol. Endocrinol. 2004; 33: 59-72https://doi.org/10.1677/jme.0.0330059
        • Dozio E.
        • Ruscica M.
        • Galliera E.
        • Corsi M.M.
        • Magni P.
        Leptin, ciliary neurotrophic factor, leukemia inhibitory factor and interleukin 6: class-I cytokines involved in the neuroendocrine regulation of the reproductive function.
        Curr. Protein Pept. Sci. 2009; https://doi.org/10.2174/138920309789630561
        • Engel P.
        • Zhou L.J.
        • Ord D.C.
        • Sato S.
        • Koller B.
        • Tedder T.F.
        Abnormal B lymphocyte delevopment, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule.
        Immunity. 1995; 3: 39-50https://doi.org/10.1016/1074-7613(95)90157-4
        • Erickson G.F.
        • Ling N.
        Cyclic changes in follistatin messenger ribonucleic acid and its protein in the rat ovary during the estrous cycle.
        Endocr. Soc. 1991; 129: 603-611https://doi.org/10.1210/endo-129-2-603
        • Fauser B.C.J.M.
        • Tarlatzis B.C.
        • Rebar R.W.
        • Legro R.S.
        • Balen A.H.
        • Lobo R.
        • Carmina E.
        • Chang J.
        • Yildiz B.O.
        • Laven J.S.E.
        • Boivin J.
        • Petraglia F.
        • Wijeyeratne C.N.
        • Norman R.J.
        • Dunaif A.
        • Franks S.
        • Wild R.A.
        • Dumesic D.
        • Barnhart K.
        Consensus on women's health aspects of polycystic ovary syndrome.
        Fertil. Steril. 2012; 97 (e25): 28-38https://doi.org/10.1016/j.fertnstert.2011.09.024
        • Forges T.
        Impact of folate and homocysteine metabolism on human reproductive health.
        Hum. Reprod. 2007; 13: 225-238https://doi.org/10.1093/humupd/dml063
        • Foroozanfard F.
        • Soleimani A.
        • Arbab E.
        • Samimi M.
        Relationship between IL-17 and ambulatory blood pressure in polycystic ovary syndrome.
        J. Nephropathol. 2017; 6: 15-23https://doi.org/10.15171/jnp.2017.04
        • Frasca D.
        • Blomberg B.B.
        • Paganelli R.
        • Frasca D.
        Aging, obesity, and inflammatory age-related diseases.
        Front. Immunol. 2017; 8: 1-10https://doi.org/10.3389/fimmu.2017.01745
        • Fu L.
        • Xu Y.
        • Li D.
        • Dai X.
        • Xu X.
        • Ming H.
        • Zhang X.
        • Zhang G.
        • Zheng L.
        • Xu Y.
        • Li D.
        • Dai X.
        • Xu X.
        • Ming H.
        • Zhang X.
        • Zhang G.
        • Zheng L.
        Expression profiles of mRNA and long noncoding RNA in the ovaries of letrozole-induced polycystic ovary syndrome rat model through deep sequencing.
        Gene. 2018; 657: 19-29https://doi.org/10.1016/j.gene.2018.03.002
        • Gao L.
        • Chen S.
        • Fu L.
        Differential expression of microRNAs in the ovaries from letrozole-induced rat model of polycystic ovary syndrome.
        DNA Cell. Biol. 2016; 35: 1-7https://doi.org/10.1089/dna.2015.3145
        • García-Beltran C.
        • Cereijo R.
        • Quesada-López T.
        • Malpique R.
        • López-Bermejo A.
        • De Zegher F.
        • Ibáñez L.
        • Villarroya F.
        Reduced circulating levels of chemokine CXCL14 in adolescent girls with polycystic ovary syndrome: normalization after insulin sensitization.
        BMJ Open Diabetes Res. Care. 2020; 8: 1-6https://doi.org/10.1136/bmjdrc-2019-001035
        • Ghosh S.
        • Chan C.K.
        Analysis of RNA-Seq data using TopHat and Cufflinks.
        Methods Mol. Biol. 2016; 1374: 339-361https://doi.org/10.1007/978-1-4939-3167-5_18
        • Gittens J.E.I.
        • Kidder G.M.
        Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries.
        J. Cell Sci. 2005; 118: 5071-5078https://doi.org/10.1242/jcs.02624
        • González F.
        Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction.
        Steroids. 2012; 77: 300-305https://doi.org/10.1016/j.steroids.2011.12.003
        • Gottschau M.
        • Kjaer S.K.
        • Jensen A.
        • Munk C.
        • Mellemkjaer L.
        Risk of cancer among women with polycystic ovary syndrome: a Danish cohort study.
        Gynecol. Oncol. 2015; 136: 99-103https://doi.org/10.1016/j.ygyno.2014.11.012
        • Haskill S.
        • Peace A.M.Y.
        • Morris J.
        • Sporn S.A.
        • Anisowiczt A.
        • Leeo S.A.M.W.
        • Smitji T.
        • Martin G.
        • Ralph P.
        • Sagertii R.
        Identification of three related human GRO genes encoding cytokine functions.
        Proc. Natl. Acad. Sci. U S A. 1990; 87: 7732-7736https://doi.org/10.1073/pnas.87.19.7732
        • Herder C.
        • Dalmas E.
        • Böni-Schnetzler M.
        • Donath M.Y.
        The IL-1 pathway in type 2 diabetes and cardiovascular complications.
        Trends Endocrinol. Metab. 2015; 26: 551-563https://doi.org/10.1016/j.tem.2015.08.001
        • Herder C.
        • de las Heras Gala T.
        • Carstensen-Kirberg M.
        • Huth C.
        • Zierer A.
        • Wahl S.
        • Sudduth-Klinger J.
        • Kuulasmaa K.
        • Peretz D.
        • Ligthart S.
        • Bongaerts B.W.C.
        • Dehghan A.
        • Arfan Ikram M.
        • Jula A.
        • Kee F.
        • Pietilä A.
        • Saarela O.
        • Zeller T.
        • Blankenberg S.
        • Meisinger C.
        • Peters A.
        • Roden M.
        • Salomaa V.
        • Koenig W.
        • Thoran B.
        Circulating levels of interleukin 1-receptor antagonist and risk of cardiovascular disease: meta-analysis of six population-based cohorts.
        Arter. Thromb. Vasc. Biol. 2017; 37: 1222-1227https://doi.org/10.1161/ATVBAHA.117.309307
        • Herder C.
        • Kannenberg J.M.
        • Huth C.
        • Carstensen-Kirberg M.
        • Rathmann W.
        • Koenig W.
        • Heier M.
        • Sonja P.
        Proinflammatory cytokines predict the incidence and progression of distal sensorimotor polyneuropathy: KORA F4/FF4 study.
        Diabetes Care. 2017; 40: 569-576https://doi.org/10.2337/dc16-2259
        • Huang X.
        • Hao C.
        • Shen X.
        • Zhang Y.
        • Liu X.
        RUNX2, GPX3 and PTX3 gene expression profiling in cumulus cells are reflective oocyte/embryo competence and potentially reliable predictors of embryo developmental competence in PCOS patients.
        Reprod. Biol. Endocrinol. 2013; 11: 109https://doi.org/10.1186/1477-7827-11-109
        • Jiao J.
        • Shi B.
        • Wang T.
        • Fang Y.
        • Cao T.
        • Zhou Y.
        • Wang X.
        • Li D.
        Characterization of long non-coding RNA and messenger RNA pro fi les in follicular fl uid from mature and immature ovarian follicles of healthy women and women with polycystic ovary syndrome.
        Hum. Reprod. 2018; 33: 1735-1748https://doi.org/10.1093/humrep/dey255
        • Jimenez P.T.
        • Frolova A.I.
        • Chi M.M.
        • Grindler N.M.
        • Willcockson A.R.
        • Reynolds K.A.
        • Zhao Q.
        • Moley K.H.
        DHEA-mediated inhibition of the pentose phosphate pathway alters oocyte lipid metabolism in mice.
        Endocrinology. 2013; 154: 4835-4844https://doi.org/10.1210/en.2012-2140
        • Jorgez C.J.
        • Klysik M.
        • Jamin S.P.
        • Behringer R.R.
        • Matzuk M.M.
        Granulosa cell-specific inactivation of follistatin.
        Mol. Endocrinol. 2004; 18: 953-967https://doi.org/10.1210/me.2003-0301
        • Kanehisa M.
        • Araki M.
        • Goto S.
        • Hattori M.
        • Hirakawa M.
        • Itoh M.
        • Katayama T.
        • Kawashima S.
        • Okuda S.
        • Tokimatsu T.
        • Yamanishi Y.
        KEGG for linking genomes to life and the environment.
        Nucleic Acids Res. 2008; 36: 480-484https://doi.org/10.1093/nar/gkm882
        • Karuputhula N.B.
        • Chattopadhyay R.
        • Chaudhury K.
        Oxidative status in granulosa cells of infertile women undergoing IVF.
        Syst. Biol. Reprod. Med. 2013; 59: 91-98https://doi.org/10.3109/19396368.2012.743197
        • Kimura F.
        • Bonomi L.M.
        • Schneyer A.L.
        Follistatin regulates germ cell nest breakdown and primordial follicle formation.
        Endocrinology. 2011; 152: 697-706https://doi.org/10.1210/en.2010-0950
        • Koc O.
        • Ozdemirici S.
        • Acet M.
        • Soyturk U.
        Nuclear factor-κB expression in the endometrium of normal and overweight women with polycystic ovary syndrome.
        J. Obstet. Gynaecol. 2017; 37: 924-930https://doi.org/10.1080/01443615.2017.1315563
        • Koliaki C.
        • Szendroedi J.
        • Kaul K.
        • Jelenik T.
        • Nowotny P.
        • Jankowiak F.
        • Herder C.
        • Carstensen M.
        • Krausch M.
        • Knoefel W.T.
        • Schlensak M.
        • Roden M.
        Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis.
        Cell. Metab. 2015; 21: 739-746https://doi.org/10.1016/j.cmet.2015.04.004
        • Kuang H.
        • Duan Y.
        • Li D.
        • Xu Y.
        • Ai W.
        • Li W.
        • Wang Y.
        • Liu S.
        • Li M.
        • Liu X.
        • Shao M.
        The role of serum inflammatory cytokines and berberine in the insulin signaling pathway among women with polycystic ovary syndrome.
        PLoS One. 2020; 15e0235404https://doi.org/10.1371/journal.pone.0235404
      1. Kyei, G., Sobhani, A., Nekonam, S., Shabani, M., Ebrahimi, F., Qasemi, M., Salahi, E., Fardin, A., 2020. Assessing the effect of MitoQ10 and Vitamin D3 on ovarian oxidative stress, steroidogenesis and histomorphology in DHEA induced PCOS mouse model. Heliyon 6: e04279. https://doi.org/10.1016/j.heliyon.2020.e04279

        • Lai H.
        • Jia X.
        • Yu Q.
        • Zhang C.
        • Qiao J.
        • Guan Y.
        • Kang J.
        High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.
        Biol. Reprod. 2014; 91: 1-11https://doi.org/10.1095/biolreprod.114.120063x
        • Lai Q.
        • Xiang W.
        • Li Q.
        • Zhang H.
        • Li Y.
        • Zhu G.
        • Xiong C.
        • Jin L.
        Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome.
        Front. Med. 2018; 12: 518-524https://doi.org/10.1007/s11684-017-0575-y
        • Lédée-Bataille N.
        • Laprée-Delage G.
        • Taupin J.L.
        • Dubanchet S.
        • Taieb J.
        • Moreau J.F.
        • Chaouat G.
        Follicular fluid concentration of leukaemia inhibitory factor is decreased among women with polycystic ovarian syndrome during assisted reproduction cycles.
        Hum. Reprod. 2001; 16: 2073-2078https://doi.org/10.1093/humrep/16.10.2073
        • Li Z.
        • Zhu Y.
        • Li H.
        • Jiang W.
        • Liu H.
        • Yan J.
        • Chen Z.J.
        • Li W.
        Leukaemia inhibitory factor in serum and follicular fluid of women with polycystic ovary syndrome and its correlation with IVF outcome.
        Reprod. Biomed. Online. 2018; 36: 483-489https://doi.org/10.1016/j.rbmo.2017.12.020
        • Liu L.
        • Tan R.
        • Liu J.
        • Cui Y.
        • Liu J.
        • Wu J.
        Mutational analysis of theFST gene in Chinese women with idiopathic premature ovarian failure.
        Climacteric. 2012; 15: 1-4https://doi.org/10.3109/13697137.2012.733982
        • Liu M.
        • Gao J.
        • Zhang Y.
        • Li P.
        • Wang H.
        • Ren X.
        • Li C.
        Serum levels of TSP-1, NF-κB and TGF-β1 in polycystic ovarian syndrome (PCOS) patients in northern China suggest PCOS is associated with chronic inflammation.
        Clin. Endocrinol. 2015; 1507: 913-922https://doi.org/10.1111/cen.12951
        • Liu Q.
        • Kong L.
        • Zhang J.
        • Xu Q.
        • Wang J.
        • Xue Z.
        • Wang J.
        Involvement of GJA1 and gap junctional intercellular communication between cumulus cells and oocytes from women with PCOS.
        BioMed Res. Int. 2020; 20205403904https://doi.org/10.1155/2020/5403904
        • Lu J.
        • Chatterjee M.
        • Schmid H.
        • Beck S.
        • Gawaz M.
        CXCL14 as an emerging immune and inflammatory modulator.
        J. Inflamm. (Lond.). 2016; 13https://doi.org/10.1186/s12950-015-0109-9
        • Mao X.
        • Cai T.
        • Olyarchuk J.G.
        • Wei L.
        Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary.
        Databases Ontol. 2005; 21: 3787-3793https://doi.org/10.1093/bioinformatics/bti430
        • Motta A.B.
        Dehydroepiandrosterone to induce murine models for the study of polycystic ovary syndrome.
        J. Steroid Biochem. Mol. Biol. 2010; 119: 105-111https://doi.org/10.1016/j.jsbmb.2010.02.015
        • Nagalakshmi U.
        The transcriptional landscape of the yeast genome defined by RNA sequencing.
        Science. 2008; 320: 1344-1349https://doi.org/10.1126/science.1158441
        • Oberbeck R.
        • Deckert H.
        • Bangen J.
        • Kobbe P.
        • Schmitz D.
        Dehydroepiandrosterone: a modulator of cellular immunity and heat shock protein 70 production during polymicrobial sepsis.
        Intensive Care Med. 2007; 33: 2207-2213https://doi.org/10.1007/s00134-007-0851-4
        • Ott J.
        • Wattar L.
        • Kurz C.
        • Seemann R.
        • Huber J.C.
        • Mayerhofer K.
        Parameters for calcium metabolism in women with polycystic ovary syndrome who undergo clomiphene citrate stimulation : a prospective cohort study.
        Eur. J. Endocrinol. 2012; 166: 897-902https://doi.org/10.1530/EJE-11-1070
        • Oztas E.
        • Ozler S.
        • Tokmak A.
        • Yilmaz N.
        • Danisman N.
        • Ergin M.
        • Yakut H.I.
        Increased granzyme B levels are associated with insulin resistance in adolescent polycystic ovary patients.
        Fertil. Steril. 2015; 104: e127https://doi.org/10.1016/j.fertnstert.2015.07.392
        • Oztas E.
        • Ozler S.
        • Tokmak A.
        • Yilmaz N.
        • Tugrul H.
        • Hacıevliyagil F.
        • Danisman N.
        • Ergin M.
        • Ibrahim H.
        Increased levels of serum granzyme-B is associated with insulin resistance and increased cardiovascular risk in adolescent polycystic ovary syndrome patients.
        Eur. J. Obstet. Gynecol. 2016; 198: 89-93https://doi.org/10.1016/j.ejogrb.2016.01.009
        • Peng Z.
        • Sun Y.
        • Lv X.
        • Zhang H.
        • Liu C.
        • Dai S.
        Interleukin-6 levels in women with polycystic ovary syndrome: a systematic review and meta-analysis.
        PLoS One. 2016; 11: 1-14https://doi.org/10.1371/journal.pone.0148531
        • Qi J.
        • Li J.
        • Wang Y.
        • Wang W.
        • Zhu Q.
        • He Y.
        • Lu Y.
        • Wu H.
        • Li X.
        • Zhu Z.
        • Ding Y.
        • Xu R.
        • Sun Y.
        Novel role of CXCL14 in modulating STAR expression in luteinized granulosa cells: implication for progesterone synthesis in PCOS patients.
        Transl. Res. 2020; 230: 55-67https://doi.org/10.1016/j.trsl.2020.10.009
        • Qi L.
        • Liu B.
        • Chen X.
        • Liu Q.
        • Li W.
        • Lv B.
        • Xu X.
        • Wang L.
        • Zeng Q.
        • Xue J.
        • Xue Z.
        Single-cell transcriptomic analysis reveals mitochondrial dynamics in oocytes of patients with polycystic ovary syndrome.
        Front. Genet. 2020; 11: 1-10https://doi.org/10.3389/fgene.2020.00396
        • Rathinam V.A.K.
        • Fitzgerald K.A.
        Inflammasome complexes: emerging mechanisms and effector functions.
        Cell. 2016; 165: 792-800https://doi.org/10.1016/j.cell.2016.03.046
        • Rickert R.C.
        • Rajewsky K.
        • Roes J.
        Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice.
        Nature. 1995; 376: 352-355https://doi.org/10.1038/376352a0
        • Saito Y.
        • Kondo H.
        • Hojo Y.
        Granzyme B as a novel factor involved in cardiovascular diseases.
        J. Cardiol. 2011; 57: 141-147https://doi.org/10.1016/j.jjcc.2010.10.001
        • Sato S.
        • Hasegawa M.
        • Fujimoto M.
        • Tedder T.F.
        • Takehara K.
        Quantitative genetic variation in CD19 expression correlates with autoimmunity.
        J. Immunol. 2000; 165: 6635-6643https://doi.org/10.4049/jimmunol.165.11.6635
        • Sato S.
        • Steeber D.A.
        • Tedder T.F.
        The CD19 signal transduction molecule is a response regulator of B-lymphocyte differentiation.
        Proc. Natl. Acad. Sci. U S A. 1995; 92: 11558-11562https://doi.org/10.1073/pnas.92.25.11558
        • Savineau J.P.
        • Marthan R.
        • Dumas De La Roque E.
        Role of DHEA in cardiovascular diseases.
        Biochem. Pharmacol. 2012; 85: 718-726https://doi.org/10.1016/j.bcp.2012.12.004
        • Schachter M.
        • Raziel A.
        • Friedler S.
        • Strassburger D.
        • Bern O.
        • Ron-El R.
        Insulin resistance in patients with polcystic ovary syndrome is associated with elevated plasma homocysteine.
        Hum. Reprod. 2003; 18: 721-727https://doi.org/10.1093/humrep/deg190
        • Segal A.W.
        • Shatwell K.P.
        The NADPH oxidase of phagocytic leukocytes.
        Ann. NY Acad. Sci. 2006; 832: 215-222https://doi.org/10.1111/j.1749-6632.1997.tb46249.x
        • Seyam E.
        • Hasan M.
        • Khalifa E.M.
        • Ramadan A.
        • Hefzy E.
        Evaluation of tumor necrosis factor alpha serum level in obese and lean women with clomiphene citrate-resistant polycystic ovary disease.
        Gynecol. Endocrinol. 2017; 33: 892-898https://doi.org/10.1080/09513590.2017.1320383
        • Smith A.D.
        • Refsum H.
        Homocysteine, B vitamins, and cognitive impairment.
        Annu. Rev. Nutr. 2016; 36: 211-239https://doi.org/10.1146/annurev-nutr-071715-050947
        • Stewart C.L.
        • Kaspar P.
        • Brunet L.J.
        • Bhatt H.
        • Gadi I.
        • Köntgen F.
        • Abbondanzo S.J.
        Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor.
        Nature. 1992; 359: 76-79https://doi.org/10.1038/359076a0
        • Suzuki S.
        • Franchi L.
        • He Y.
        • Muñoz-Planillo Mimuro, H.
        • Suzuki T.
        • Sasakawa C.
        • Núñez G.
        Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcδ.
        PLOS Pathog. 2014; 10e1003926https://doi.org/10.1371/journal.ppat.1003926
        • Tedder T.F.
        • Inaoki M.
        • Sato S.
        The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity.
        Immunity. 1997; 6: 107-118https://doi.org/10.1016/S1074-7613(00)80418-5
        • Thomas H.E.
        • Trapani J.A.
        • Kay T.W.H.
        The role of perforin and granzymes in diabetes.
        Cell Death Differ. 2010; 17: 577-585https://doi.org/10.1038/cdd.2009.165
        • Torpy J.M.
        • Lynm C.
        • Glass R.M.x
        The metabolic syndrome.
        JAMA. 2006; 295: 850https://doi.org/10.1001/jama.295.7.850
        • Trapani J.A.
        • Smyth M.J.
        Functional significance of the perforin/granzyme cell death pathway.
        Nat. Rev. Immunol. 2002; 2: 735-747https://doi.org/10.1038/nri911
        • Venkatesan A.M.
        • Dunaif A.
        • Corbould A.
        Insulin resistance in polycystic ovary syndrome: progress and paradoxes.
        Recent Prog. Horm. Res. 2001; 56: 295-308https://doi.org/10.1210/rp.56.1.295
        • von Moltke J.
        • Trinidad N.J.
        • Moayeri M.
        • Kintzer A.F.
        • Wang S.B.
        • van Rooijen N.
        • Brown C.R.
        • Krantz B.A.
        • Leppla S.H.
        • Gronert K.
        • Vance R.E.
        Rapid induction of inflammatory lipid mediators by the inflammasomein vivo.
        Nature. 2012; 490: 107-111https://doi.org/10.1038/nature11351
        • Walters K.A.
        • Allan C.M.
        • Handelsman D.J.
        Rodent models for human polycystic ovary syndrome.
        Biol. Reprod. 2012; 86: 1-12https://doi.org/10.1095/biolreprod.111.097808
        • Wang W.
        • Ji J.
        • Li J.
        • Ren Q.
        • Gu J.
        • Zhao Y.
        • Hong D.
        • Guo Q.
        • Tan Y.
        Several critical genes and microRNAs associated with the development of polycystic ovary syndrome.
        Ann. Endocrinol. (Paris). 2019; 81: 18-27https://doi.org/10.1016/j.ando.2019.10.002
        • Wei L.
        • Xin C.
        • Wang W.
        • Hao C.
        Microarray analysis of obese women with polycystic ovary syndrome for key gene screening, key pathway identification and drug prediction.
        Gene. 2018; 661: 85-94https://doi.org/10.1016/j.gene.2018.03.079
        • Wu H.
        • Yu K.
        • Yang Z.
        Associations between TNF-α and interleukin gene polymorphisms with polycystic ovary syndrome risk: a systematic review and meta-analysis.
        J. Assist. Reprod. Genet. 2015; 32: 625-634https://doi.org/10.1007/s10815-015-0449-7
        • Xie Q.
        • Xiong X.
        • Xiao N.
        • He K.
        • Chen M.
        • Peng J.
        • Su X.
        • Mei H.
        • Dai Y.
        • Wei D.
        • Lin G.
        • Cheng L.
        Mesenchymal stem cells alleviate DHEA-induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice.
        Stem. Cells Int. 2019; 20199782373https://doi.org/10.1155/2019/9782373
        • Yanes L.L.
        • Romero D.G.
        • Moulana M.
        • Lima R.
        • Davis D.D.
        • Zhang H.
        • Lockhart R.
        • Racusen L.C.
        • Reckelhoff J.F.
        Cardiovascular-renal and metabolic characterization of a rat model of polycystic ovary syndrome.
        Gend. Med. 2011; 8: 103-115https://doi.org/10.1016/j.genm.2010.11.013
        • Yang H.
        • Youm Y.
        • Vandanmagsar B.
        • Ravussin A.
        • Gimble J.M.
        • Greenway F.
        • Stephens J.M.
        • Mynatt R.L.
        Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance.
        J. Immunol. 2014; 185: 1836-1845https://doi.org/10.4049/jimmunol.1000021
        • Yang Z.
        • Chen D.
        • Le S.
        • Harper M.J.K.
        Differential hormonal regulation of leukemia inhibitory factor (LIF) in rabbit and mouse uterus.
        Mol. Reprod. Dev. 1996; 476: 470-476
        • Yaral H.
        • Yldrr A.
        • Aybar F.
        • Kabakç G.
        • Bükülmez O.
        • Akgül E.
        • Oto A.
        Diastolic dysfunction and increased serum homocysteine concentrations may contribute to increased cardiovascular risk in patients with polycystic ovary syndrome.
        Fertil. Steril. 2001; 76: 511-516https://doi.org/10.1016/S0015-0282(01)01937-9
        • Young M.D.
        • Wakefield M.J.
        • Smyth G.K.
        • Oshlack A.
        Gene ontology analysis for RNA-seq: accounting for selection bias.
        Genome Biol. 2010; 11: R14https://doi.org/10.1186/gb-2010-11-2-r14
        • Yu H.-F.
        • Chen H.-S.
        • Rao D.-P.
        • Gong J.
        Association between polycystic ovary syndrome and the risk of pregnancy complications: a PRISMA-compliant systematic review and meta-analysis.
        Medicine (Baltimore). 2016; 95: e4863https://doi.org/10.1097/MD.0000000000004863
        • Yuanyuan S.
        • Qin S.
        • Rongrong X.
        • Yujing G.
        • Chengbin P.
        • Jianjun M.
        • Yanzhou Y.
        • Xiuying P.
        Reference gene selection for real-time quantitative PCR analysis on ovarian cryopreservation by vitrification in mice.
        J. Assist. Reprod. Genet. 2015; 32: 1277-1284https://doi.org/10.1007/s10815-015-0503-5
        • Zhang C.
        • Liu J.
        • Lai M.
        • Li J.
        • Zhan J.
        • Wen Q.
        • Ma H.
        Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome.
        Arch. Gynecol. Obstet. 2019; 300: 431-440https://doi.org/10.1007/s00404-019-05129-5

      Biography

      Amin Ullah is a PhD student at the Joint International Research Laboratory of Reproduction and Development at Chongqing Medical University, China. He has an MPhil in Zoology from Hazara University, Menshera, Pakistan. His current research interests include inflammatory biomarkers in PCOS, RNA sequencing and reproductive immunology.
      Key message
      A total of 436 genes were expressed differently in PCOS and control mice (137 up-regulated and 299 down-regulated). Gene ontology analysis indicated that differentially expressed mRNA were associated with T cell-mediated cytotoxicity. Pathway analysis linked these aberrant mRNA to NF-κB signalling and phenylalanine metabolism, which are related to inflammation and PCOS.