Abstract
Keywords
Introduction
- Khosravi P.
- Kazemi E.
- Zhan Q.
- Malmsten J.E.
- Toschi M.
- Zisimopoulos P.
- Sigaras A.
- Lavery S.
- Cooper L.A.D.
- Hickman C.
- Meseguer M.
- Rosenwaks Z.
- Elemento O.
- Zaninovic N.
- Khosravi P.
- Kazemi E.
- Zhan Q.
- Malmsten J.E.
- Toschi M.
- Zisimopoulos P.
- Sigaras A.
- Lavery S.
- Cooper L.A.D.
- Hickman C.
- Meseguer M.
- Rosenwaks Z.
- Elemento O.
- Zaninovic N.
- Curchoe C.L.
- Bormann C.L.
AI terminology | Abbreviation | Definition | References |
---|---|---|---|
Adaptive adversarial neural networks | AANN | Method of deep learning that can be used with unlabelled data from unseen domain-shifted datasets to adapt pretrained supervised networks to new distributions, even when data from the original distribution are not available. | Kanakasabapathy et al., 2021
Adaptive adversarial neural networks for the analysis of lossy and domain-shifted datasets of medical images. Nat. Biomed. Eng. 2021; 5 (doi:10.1038/s41551-021-00733-w. [Epub 2021 Jun 10]. PMID: 34112997): 571-585 |
Adversarial machine learning | AML | A machine learning technique that attempts to fool models by supplying deceptive input. | Kianpour and Wen, 2020 |
Artificial intelligence | AI | Any intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. | Malik et al., 2021 ;
Ten simple rules for engaging with artificial intelligence in biomedicine. PLoS Comput. Biol. 2021; 17e1008531https://doi.org/10.1371/journal.pcbi.1008531 Poole et al., 1998 |
Artificial neural network | ANN | A highly abstracted and simplified model compared to the mammalian brain, used in machine learning. A set of units receives input data, performs computations on them, and passes them to the next layer of units. The final layer represents the answer to the problem. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Black box | – | The calculations performed by some deep learning systems between input and output are not easy (and potentially impossible) for humans to understand. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Computer vision | CV | An interdisciplinary scientific field that deals with how computers can be made to gain high-level understanding from digital images or videos. | Sonka et al., 2008 |
Convolutional neural network | CNN (or ConvNet) | In deep learning, a class of deep neural networks, mostly applied to analysing visual imagery. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Data augmentation | – | In data analysis, techniques used to increase the amount of data. It helps reduce overfitting when training a machine learning. | Shorten and Khoshgoftaar, 2019 |
Decision tree | – | A flow chart-like structure in which each internal node represents a ‘test’ on an attribute, each branch represents the outcome of the test, and each leaf node represents a class label. The paths from root to leaf represent classification rules. | Kamiński et al., 2017
A framework for sensitivity analysis of decision trees. Cent. Eur. J. Oper. Res. 2017; 26 (PMC 5767274. PMID 29375266): 135-159https://doi.org/10.1007/s10100-017-0479-6 |
Deep learning | DL | A specific subfield of deep learning. It is a process by which a neural network becomes sensitive to progressively more abstract patterns. Hundreds of successive layers of data representations are learned automatically through exposure to training data. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Feature extraction | – | In machine learning, a feature is an individual measurable property or characteristic of a phenomenon. Features are intended to be informative and non-redundant, facilitating the subsequent learning and generalization steps, and in some cases leading to better human interpretations. | |
Generative adversarial network | GAN | Two neural networks contest with each other in a game (in the form of a zero-sum game, where one agent's gain is another agent's loss). | Goodfellow et al., 2014 |
Ground truth | – | Information that is known to be real or true, provided by direct observation and measurement (i.e. empirical evidence) as opposed to information provided by inference. | Lemoigne and Caner, 2006 |
Hidden layers | – | An internal layer of neurons in an artificial neural network, not dedicated to input or output. | Uzair and Jamil, 2020
Effects of hidden layers on the efficiency of neural networks. in: IEEE 23rd International Multitopic Conference (INMIC). 2020: 1-6https://doi.org/10.1109/INMIC50486.2020.9318195 |
Image segmentation | – | The process of partitioning a digital image into multiple segments (sets of pixels, also known as image objects). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyse. | |
Machine learning | ML | Algorithms that find patterns in data without explicit instructions. Machine learning is a single contributing entity for AI technology. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Overfitting | – | The production of an analysis that corresponds too closely or exactly to a set of data and may therefore fail to fit additional data or predict future observations reliably. | Chicco, 2017 |
Prediction models | – | Uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. | Geisser, 1993 |
Reinforcement learning | RL | An area of machine learning concerned with how software agents ought to take actions in an environment to maximize some notion of cumulative reward. | Kaelbling et al., 1996 |
Shallow learning | – | A type of machine learning where we learn from data described by predefined features. | Bengio et al., 2013
Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013; 35 (arXiv:1206.5538PMID 23787338. S2CID 393948): 1798-1828https://doi.org/10.1109/tpami.2013.50 |
Supervised learning | SL | The machine learning task of learning a function that maps an input to an output based on example input–output pairs. It infers a function from labelled training data consisting of a set of training examples. | Hinton and Sejnowski, 1999 ; Mohri et al., 2012 |
Support vector machines | SVM | In machine learning, support vector machines are supervised learning models with associated learning algorithms that analyse data used for classification and regression analysis. | Cortes and Vapnik, 1995 |
Synthetic data | – | Any production data applicable to a given situation that are not obtained by direct measurement. | Patki et al., 2016
The Synthetic Data Vault. in: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 2016: 399-410https://doi.org/10.1109/DSAA.2016.49 |
Test dataset | – | The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Training dataset | – | The sample of data used to fit the model. The actual dataset that we use to train the model (weights and biases in the case of neural networks). The model sees and learns from this data. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Transfer learning | TL | A technique in machine learning where the algorithm learns one task, and builds on that knowledge while learning a different, but related, task. Transfer learning is an alternative approach to help mitigate the large, manually annotated datasets needed for training an AI. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Underfitting | – | Occurs when a statistical model cannot adequately capture the underlying structure of the data. | Chicco, 2017 |
Unsupervised learning | UL | A type of self-organized learning that helps find previously unknown patterns in datasets without pre-existing labels. It is also known as self-organization and allows modelling probability densities of given inputs. | Hinton and Sejnowski, 1999 |
Validation dataset | – | The sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters. The evaluation becomes more biased as skill on the validation dataset is incorporated into the model configuration. | Curchoe and Bormann, 2019
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x |
Cell type | ART procedure | Summary of advancement | References |
---|---|---|---|
Spermatozoa | Sperm count | Automated calculation of sperm concentration on a handheld device. | Kanakasabapathy et al., 2017
An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Transl. Med. 2017; 9 (eaai7863PMID: 28330865; PMCID: PMC5701517): 382https://doi.org/10.1126/scitranslmed.aai7863 |
Sperm motility assessment | Automated calculation of sperm motility on a handheld device. | Kanakasabapathy et al., 2017
An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Transl. Med. 2017; 9 (eaai7863PMID: 28330865; PMCID: PMC5701517): 382https://doi.org/10.1126/scitranslmed.aai7863 | |
Forward progression score | Automated measurement of sperm velocity and classification of individual sperm forward progression score. | Goodson et al., 2017 ;
CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns. Biol. Reprod. 2017; 97 (PMID: 29036474; PMCID: PMC6248632): 698-708https://doi.org/10.1093/biolre/iox120 Kanakasabapathy et al., 2017
An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Transl. Med. 2017; 9 (eaai7863PMID: 28330865; PMCID: PMC5701517): 382https://doi.org/10.1126/scitranslmed.aai7863 | |
DNA fragmentation assay | Automated measurement of sperm DNA fragmentation on a handheld device. | Dimitriadis et al., 2019a
Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score. PLoS One. 2019; 14 (PMID: 30865652; PMCID: PMC6415876)e0212562https://doi.org/10.1371/journal.pone.0212562 | |
Sperm viability assessment | Automated differential count of live–dead sperm staining. | Dimitriadis et al., 2019a
Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score. PLoS One. 2019; 14 (PMID: 30865652; PMCID: PMC6415876)e0212562https://doi.org/10.1371/journal.pone.0212562 | |
Sperm morphology measurement | Automated classification and measurement of normal and abnormal sperm morphology forms. | Mirsky et al., 2017 ;
Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytometry Part A. 2017; 91A ([Epub 2017 Aug 22.] PMID: 28834185): 893-900https://doi.org/10.1002/cyto.a.23189 Thirumalaraju et al., 2019a | |
Oocyte | Oocyte morphology classification | Identification and classification of oocyte morphological features. | Dickinson et al., 2020 ; Manna et al., 2013 ;
Artificial intelligence techniques for embryo and oocyte classification. Reprod. Biomed. Online. 2013; 26 ([Epub 2012 Oct 2.] PMID: 23177416): 42-49https://doi.org/10.1016/j.rbmo.2012.09.015 Targosz et al., 2021 |
Oocyte quality assessment | Association of oocyte morphology with pronuclear development and subsequent embryo development. | Kanakasabapathy et al., 2020a ; Manna et al., 2013 ;
Artificial intelligence techniques for embryo and oocyte classification. Reprod. Biomed. Online. 2013; 26 ([Epub 2012 Oct 2.] PMID: 23177416): 42-49https://doi.org/10.1016/j.rbmo.2012.09.015 Sacha et al., 2021 | |
Oocyte maturation assessment | Automated identification of extruded polar body in metaphase II oocytes. | Dickinson et al., 2020 | |
Alignment of oocyte for ICSI | Identification of proper location to inject spermatozoa into oocytes during ICSI. | Dickinson et al., 2020 | |
Pronuclear stage | Fertilization assessment | Automated fertilization assessment 14-18 h post-insemination. | Dimitriadis et al., 2019b ; Kanakasabapathy et al., 2020b |
Pronuclear stage morphology classification | Segmentation and classification of pronuclear stage morphologic features. | Zhao et al., Mar 2021
Application of convolutional neural network on early human embryo segmentation during in vitro fertilization. J. Cell Mol. Med. Mar 2021; 25 ([Epub 2021 Jan 24]. PMID: 33486848; PMCID: PMC7933952): 2633-2644https://doi.org/10.1111/jcmm.16288 | |
Pronuclear stage quality assessment | Prediction of embryo development at the pronuclear stage based on cytoplasmic movement. | Coticchio et al., 2021 | |
Assessment of ICSI performance | Automated monitoring of individual embryologists performing ICSI using deep-learning enabled fertilization assessment. | Thirumalaraju et al., 2019b | |
Cleavage stage | Predict day 5 embryo development | Prediction of blastocyst-stage development on Day 3 of development using extracted features, static images and time-lapse imaging data from cleavage-stage embryos. | Bortoletto et al., 2019 ;
Predicting blastocyst formation of day 3 embryos using a convolutional neural network (CNN): a machine learning approach. Fertil. Steril. 2019; 112: e272-e273 d'Estaing et al., 2021 ; Kanakasabapathy et al., 2020a ; Liao et al., 2021 ; Wang et al., 2018 |
Predict implantation potential | Cleavage-stage prediction of embryo implantation using extracted features in a decision tree model and from direct learning using static images. | Bormann et al., 2021a ; Carrasco et al., 2017
Selecting embryos with the highest implantation potential using data mining and decision tree based on classical embryo morphology and morphokinetics. J. Assist. Reprod. Genet. 2017; 34 (Epub 2017 Jun 1. PMID: 28573526; PMCID: PMC5533685): 983-990https://doi.org/10.1007/s10815-017-0955-x | |
Monitor embryo culture environment | Development of a KPI that associates the development prediction of cleavage-stage embryos with implantation outcomes. | Bormann et al., 2021a | |
Predict ploidy status of embryo | Non-invasive embryo ploidy prediction using static cleavage-stage embryo images. | Meyer et al., 2020 | |
Identify correct location to perform assisted hatching | Identification of proper location to perform laser-assisted hatching based on cleavage-stage embryo morphology. | Kelly et al., 2020 | |
Embryo identification and witnessing | Utilization of a CNN to assess cleavage-stage embryo quality and develop a unique key specific to each embryo for purposes of tracking and witnessing them throughout culture. | Bormann et al., 2021b
Development of an artificial intelligence embryo witnessing system to accurately track and identify patient specific embryos in a human IVF laboratory. Hum. Reprod. 2021; 36 (deab126.050)https://doi.org/10.1093/humrep/deab126.050 | |
Blastocyst stage | Blastocyst-stage classification | Classification and grading of blastocyst-stage embryos based on morphology and implantation outcome. | Bormann et al., 2020b ; Khosravi et al., 2019 ;
Hajirasouliha, I. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2019; 2: 21 Malmsten et al., 2020 ; Leahy et al., 2020 ; Thirumalaraju et al., 2021 ; VerMilyea et al., 2020
Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 2020; 35 (PMID: 32240301; PMCID: PMC7192535): 770-784https://doi.org/10.1093/humrep/deaa013 |
Vitrification and embryo biopsy decision-making | Use of static images to determine whether a blastocyst meets developmental criteria for vitrification and/or trophectoderm biopsy. | Bormann et al., 2020b ; Souter et al., 2020 | |
Select embryo(s) for transfer | Prediction and selection of blastocyst-stage embryos for transfer based on static images, developmental size, trophectoderm expansion and proteomics. | Bori et al., 2020 a, 2020b); Bormann et al., 2020a ; Fitz et al., 2021 ; Huang et al., 2021 ; Louis et al., 2021 ; Tran et al., 2019
Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum. Reprod. 2019; 34 (PMID: 31111884; PMCID: PMC6554189): 1011-1018https://doi.org/10.1093/humrep/dez064 | |
Predict ploidy status of embryo | Non-invasive embryo ploidy prediction using static blastocyst-stage embryo images and patient characteristics. | Chavez-Badiola et al., 2020a ;
Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod. Biomed. Online. 2020; 41 (Epub 2020 Jul 5. PMID: 32843306): 585-593https://doi.org/10.1016/j.rbmo.2020.07.003 Jiang et al., 2021 ;
The use of voting ensembles and patient characteristics to improve the accuracy of deep neural networks as a non-invasive method to classify embryo ploidy status. in: ASRM 2021 Scientific Congress & Expo. 2021 Oct 19 Meyer et al., 2020 ; Pennetta et al., 2018
Embryo morphokinetic characteristics and euploidy. Curr. Opin. Obstet. Gynecol. 2018; 30 (PMID: 29664791): 185-196https://doi.org/10.1097/GCO.0000000000000453 | |
Quality assurance monitoring of laboratory procedures | Use of implantation prediction models to assess embryo selection, vitrification, warming and transfer competencies of embryologists and physicians. | Dimitriadis et al., 2021 | |
Embryo identification and witnessing | Utilization of a CNN to assess blastocyst-stage embryo quality and develop a unique key specific to each embryo for purposes of tracking and witnessing them throughout culture. | Kanakasabapathy et al., 2020c |
AI learning algorithms
- Malik A.
- Patel P.
- Ehsan L.
- Guleria S.
- Hartka T.
- Adewole S.
- Sana S.
Burkov, A., 2019. The Hundred-Page Machine Learning Book. Available from:http://ema.cri-info.cm/wp-content/uploads/2019/07/2019BurkovTheHundred-pageMachineLearning.pdf
Burkov, A., 2019. The Hundred-Page Machine Learning Book. Available from:http://ema.cri-info.cm/wp-content/uploads/2019/07/2019BurkovTheHundred-pageMachineLearning.pdf
- Chavez-Badiola A.
- Flores-Saiffe Farias A.
- Mendizabal-Ruiz G.
- Garcia-Sanchez R.
- Drakeley A.J.
- Garcia-Sandoval J.P.
- VerMilyea M.
- Hall J.M.M.
- Diakiw S.M.
- Johnston A.
- Nguyen T.
- Perugini D.
- Miller A.
- Picou A.
- Murphy A.P.
- Perugini M.
AI algorithm training and validation
- Lancashire L.J.
- Lemetre C.
- Ball G.R.
- Tu J.V.
- Chavez-Badiola A.
- Flores-Saiffe-Farías A.
- Mendizabal-Ruiz G.
- Drakeley A.J.
- Cohen J.
- Kragh M.F.
- Rimestad J.
- Berntsen J.
- Karstoft H.
- Tran D.
- Cooke S.
- Illingworth P.J.
- Gardner D.K.
- Tran D.
- Cooke S.
- Illingworth P.J.
- Gardner D.K.
- Curchoe C.L.
- VerMilyea M.
- Hall J.M.M.
- Diakiw S.M.
- Johnston A.
- Nguyen T.
- Perugini D.
- Miller A.
- Picou A.
- Murphy A.P.
- Perugini M.
- Kanakasabapathy M.K.
- Thirumalaraju P.
- Kandula H.
- Doshi F.
- Sivakumar A.D.
- Kartik D.
- Gupta R.
- Pooniwala R.
- Branda J.A.
- Tsibris A.M.
- Kuritzkes D.R.
- Petrozza J.C.
- Bormann C.L.
- Shafiee H.
- VerMilyea M.
- Hall J.M.M.
- Diakiw S.M.
- Johnston A.
- Nguyen T.
- Perugini D.
- Miller A.
- Picou A.
- Murphy A.P.
- Perugini M.
- Chavez-Badiola A.
- Flores-Saiffe Farias A.
- Mendizabal-Ruiz G.
- Garcia-Sanchez R.
- Drakeley A.J.
- Garcia-Sandoval J.P.
Clinical training and validation
- Meseguer M.
- Valera M.Á.
D'Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M.D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., Mitani, A., Montanari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T.F., Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S., Yun, T., Zhai, X., Sculley, D. Underspecification presents challenges for credibility in modern machine learning. 2020; arXiv:2011.03395v2
- Kanakasabapathy M.K.
- Thirumalaraju P.
- Kandula H.
- Doshi F.
- Sivakumar A.D.
- Kartik D.
- Gupta R.
- Pooniwala R.
- Branda J.A.
- Tsibris A.M.
- Kuritzkes D.R.
- Petrozza J.C.
- Bormann C.L.
- Shafiee H.
- Kanakasabapathy M.K.
- Thirumalaraju P.
- Kandula H.
- Doshi F.
- Sivakumar A.D.
- Kartik D.
- Gupta R.
- Pooniwala R.
- Branda J.A.
- Tsibris A.M.
- Kuritzkes D.R.
- Petrozza J.C.
- Bormann C.L.
- Shafiee H.
AI application in assisted reproductive medicine
AI application on spermatozoa
- Dimitriadis I.
- Bormann C.L.
- Kanakasabapathy M.K.
- Thirumalaraju P.
- Kandula H.
- Yogesh V.
- Gudipati N.
- Natarajan V.
- Petrozza J.C.
- Shafiee H.
- Kanakasabapathy M.K.
- Sadasivam M.
- Singh A.
- Preston C.
- Thirumalaraju P.
- Venkataraman M.
- Bormann C.L.
- Draz M.S.
- Petrozza J.C.
- Shafiee H.
- Goodson S.G.
- White S.
- Stevans A.M.
- Bhat S.
- Kao C.Y.
- Jaworski S.
- Marlowe T.R.
- Kohlmeier M.
- McMillan L.
- Zeisel S.H.
- O'Brien D.A.
- Mirsky S.K.
- Barnea I.
- Levi M.
- Greenspan H.
- Shaked N.T.
Ovarian stimulation management
- Liao S.
- Pan W.
- Dai W.Q.
- Jin L.
- Huang G.
- Wang R.
- Hu C.
- Pan W.
- Tu H.
- Letterie G.
- MacDonald A.
AI application on oocytes
- Setti A.S.
- Figueira R.C.
- Braga D.P.
- Colturato S.S.
- Iaconelli Jr., A.
- Borges Jr., E.
- Setti A.S.
- Figueira R.C.
- Braga D.P.
- Colturato S.S.
- Iaconelli Jr., A.
- Borges Jr., E.
- Manna C.
- Nanni L.
- Lumini A.
- Pappalardo S.
AI application on pronuclear-stage embryos
- Zhao M.
- Xu M.
- Li H.
- Alqawasmeh O.
- Chung J.P.W.
- Li T.C.
- Lee T.L.
- Tang P.M.
- Chan D.Y.L.
AI application on cleavage-stage embryos
- Prados F.J.
- Debrock S.
- Lemmen J.G.
- Agerholm I.
- Bortoletto P.
- Kanakasabapathy M.K.
- Thirumalaraju P.
- Gupta R.
- Pooniwala R.
- Souter I.
- Dimitriadis I.
- Dickinson K.
- Hariton E.
- Bormann C.L.
- Shafiee H.
- Carrasco B.
- Arroyo G.
- Gil Y.
- Gómez M.J.
- Rodríguez I.
- Barri P.N.
- Veiga A.
- Boada M.
- Bormann C.L.
- Kanakasabapathy M.K.
- Thirumalaraju P.
- Dimitriadis I.
- Souter I.
- Hammer K.
- Shafiee H.
AI application on blastocyst-stage embryos
Time-lapse microscopy (TLM) image analysis
- Tran D.
- Cooke S.
- Illingworth P.J.
- Gardner D.K.
- Bori L.
- Dominguez F.
- Fernandez E.I.
- Del Gallego R.
- Alegre L.
- Hickman C.
- Quiñonero A.
- Nogueira M.F.G.
- Rocha J.C.
- Meseguer M.
Static image analysis of blastocysts
- Khosravi P.
- Kazemi E.
- Zhan Q.
- Malmsten J.E.
- Toschi M.
- Zisimopoulos P.
- Sigaras A.
- Lavery S.
- Cooper L.A.D.
- Hickman C.
- Meseguer M.
- Rosenwaks Z.
- Elemento O.
- Zaninovic N.
- Khosravi P.
- Kazemi E.
- Zhan Q.
- Malmsten J.E.
- Toschi M.
- Zisimopoulos P.
- Sigaras A.
- Lavery S.
- Cooper L.A.D.
- Hickman C.
- Meseguer M.
- Rosenwaks Z.
- Elemento O.
- Zaninovic N.
- Fernandez E.I.
- Ferreira A.S.
- Miquelão Cecílio M.H.
- Chéles D.S.
- Milanezi de Souza R.C.
- Gouveia Nogueira M.F.
- Rocha J.C.
- VerMilyea M.
- Hall J.M.M.
- Diakiw S.M.
- Johnston A.
- Nguyen T.
- Perugini D.
- Miller A.
- Picou A.
- Murphy A.P.
- Perugini M.
Automated annotation of blastocysts
Implantation prediction
AI for non-invasive ploidy screening
- Pennetta F.
- Lagalla C.
- Borini A.
- Chavez-Badiola A.
- Flores-Saiffe-Farías A.
- Mendizabal-Ruiz G.
- Drakeley A.J.
- Cohen J.
- Chavez-Badiola A.
- Flores-Saiffe-Farías A.
- Mendizabal-Ruiz G.
- Drakeley A.J.
- Cohen J.
- Bori L.
- Dominguez F.
- Fernandez E.I.
- Del Gallego R.
- Alegre L.
- Hickman C.
- Quiñonero A.
- Nogueira M.F.G.
- Rocha J.C.
- Meseguer M.
- Jiang V.S.
- Kanakasabapathy M.K.
- Thirumalaraju P.
- Kandula H.
- Souter I.
- Dimitriadis I.
- Bormann C.L.
- Shafiee H.
Conclusion
- Curchoe C.L.
References
- Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning.Invest. Ophthalmol. Vis. Sci. 2016; 57: 5200-5206
- The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture.Hum. Reprod. 2012; 27: 2649-2657https://doi.org/10.1093/humrep/des210
- Impact of repeated antral follicle counts on the prediction of poor ovarian response in women undergoing in vitro fertilization.Fertil. Steril. 2004; 81: 35-41
- Noninvasive detection of blastocyst ploidy (euploid vs. aneuploid) using artificial intelligence (AI) with deep learning methods.Fertil. Steril. 2020; 114
- Representation learning: a review and new perspectives.IEEE Trans. Pattern Anal. Mach. Intell. 2013; 35 (arXiv:1206.5538PMID 23787338. S2CID 393948): 1798-1828https://doi.org/10.1109/tpami.2013.50
- Pattern Recognition and Machine Learning.Springer, Berlin2006
- An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: a preliminary study.Reprod. Biomed. Online. 2021; 42 (Epub 2020 Oct 8. PMID: 33279421): 340-350https://doi.org/10.1016/j.rbmo.2020.09.031
- Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential.Fertil. Steril. 2020; 114: 1232-1241
- Deep learning early warning system for embryo culture conditions and embryologist performance in the ART laboratory.J. Assist. Reprod. Genet. 2021; 38: 1641-1646https://doi.org/10.1007/s10815-021-02198-x
- Development of an artificial intelligence embryo witnessing system to accurately track and identify patient specific embryos in a human IVF laboratory.Hum. Reprod. 2021; 36 (deab126.050)https://doi.org/10.1093/humrep/deab126.050
- Performance of a deep learning based neural network in the selection of human blastocysts for implantation.eLife. 2020; 9 (PMID: 32930094; PMCID: PMC7527234): e55301https://doi.org/10.7554/eLife.55301
- Consistency and objectivity of automated embryo assessments using deep neural networks.Fertil. Steril. 2020; 113 (e1): 781-787
- Predicting blastocyst formation of day 3 embryos using a convolutional neural network (CNN): a machine learning approach.Fertil. Steril. 2019; 112: e272-e273
Burkov, A., 2019. The Hundred-Page Machine Learning Book. Available from:http://ema.cri-info.cm/wp-content/uploads/2019/07/2019BurkovTheHundred-pageMachineLearning.pdf
- Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics.Reprod. BioMed. Online. 2013; 26: 477-485
- Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts.Hum. Reprod. 2014; 29: 1173-1181
- Selecting embryos with the highest implantation potential using data mining and decision tree based on classical embryo morphology and morphokinetics.J. Assist. Reprod. Genet. 2017; 34 (Epub 2017 Jun 1. PMID: 28573526; PMCID: PMC5533685): 983-990https://doi.org/10.1007/s10815-017-0955-x
- Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation.Reprod. Biomed. Online. 2020; 41 (Epub 2020 Jul 5. PMID: 32843306): 585-593https://doi.org/10.1016/j.rbmo.2020.07.003
- Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning.Sci. Rep. 2020; 10 (PMID: 32157183; PMCID: PMC7064494): 4394https://doi.org/10.1038/s41598-020-61357-9
- Non-invasive chromosome screening and its correlation against ranking prediction made by ERICA, a deep-learning embryo ranking algorithm.Fertil. Steril. 2020; 114: e436-e437
- Editorial: special issue on learning from imbalanced data sets.ACM SIGKDD Explorations Newsletter. 2004; 6: 1-6
- Does time-lapse imaging have favorable results for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization? A meta-analysis and systematic review of randomized controlled trials.PLoS One. 2017; 12e0178720
- Synthetic data in machine learning for medicine and healthcare.Nat. Biomed. Eng. 2021; 5 (PMID: 34131324): 493-497https://doi.org/10.1038/s41551-021-00751-8
- Using deep learning with large dataset of microscope images to develop an automated embryo grading system.Fertil. Reprod. 2019; 01: 51-56
- Ten quick tips for machine learning in computational biology.BioData Mining. 2017; 10 (Published 2017 Dec 8): 35https://doi.org/10.1186/s13040-017-0155-3
- Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial.Fertil. Steril. 2013; 100 (e5): 412-419https://doi.org/10.1016/j.fertnstert.2013.04.021
- Support-vector networks.Machine Learning. 1995; 20: 273-297https://doi.org/10.1007/BF00994018
- Cytoplasmic movements of the early human embryo: imaging and artificial intelligence to predict blastocyst development.Reprod. Biomed. Online. 2021; 42: 521-528
- Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality.Reprod. Biomed. Online. 2012; 25: 371-381https://doi.org/10.1016/j.rbmo.2012.06.017
- The paper chase and the big data arms race.J. Assist. Reprod. Genet. 2021; 38 ([Epub ahead of print. PMID: 33715133]): 1613-1615https://doi.org/10.1007/s10815-021-02122-3
- Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018.J. Assist. Reprod. Genet. 2019; 36 ([Epub 2019 Jan 28]): 591-600https://doi.org/10.1007/s10815-019-01408-x
- Evaluating predictive models in reproductive medicine.Fertil. Steril. 2020; 114 (PMID: 33160514): 921-926https://doi.org/10.1016/j.fertnstert.2020.09.159
D'Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M.D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., Mitani, A., Montanari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T.F., Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S., Yun, T., Zhai, X., Sculley, D. Underspecification presents challenges for credibility in modern machine learning. 2020; arXiv:2011.03395v2
- A machine learning system with reinforcement capacity for predicting the fate of an ART embryo.Syst. Biol. Reprod. Med. 2021; 67: 64-78
- Advancement in the future automation of ICSI: use of deep convolutional neural networks (CNN) to identify precise location to inject sperm in mature human oocytes.Hum. Reprod. 2020; 35: 70-71
- Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score.PLoS One. 2019; 14 (PMID: 30865652; PMCID: PMC6415876)e0212562https://doi.org/10.1371/journal.pone.0212562
- Deep convolutional neural networks (CNN) for assessment and selection of normally fertilized human embryos.Fertil. Steril. 2019; 112: e272
- Cohort embryo selection (CES): a quick and simple method for selecting cleavage stage embryos that will become high quality blastocysts (HQB).Fertil. Steril. 2017; 108: e162-e163https://doi.org/10.1016/j.fertnstert.2017.07.488
- Artificial intelligence assistance for the quality assessment of embryo vitrification, warming and transfers in the IVF laboratory.in: ASRM 2021 Scientific Congress & Expo. 2021 (Oct 19)
- Dermatologist-level classification of skin cancer with deep neural networks.Nature. 2017; 542: 115-118https://doi.org/10.1038/nature21056
- Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data.J. Assist. Reprod. Genet. 2020; 37: 2359-2376
- Should there be an “AI” in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm.J. Assist. Reprod. Genet. 2021; 38: 2663-2670https://doi.org/10.1007/s10815-021-02318-7
- Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer.Fertil. Steril. 2000; 73 (doi.org/10.1016/S0015-0282(00)00518-5): 1155-1158
- Predictive Inference: An Introduction.Chapman & Hall/CRC, Boca Raton, FL, USA1993
- Generative adversarial nets.in: Proceedings of the International Conference on Neural Information Processing Systems. 2014: 2672-2680
- CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns.Biol. Reprod. 2017; 97 (PMID: 29036474; PMCID: PMC6248632): 698-708https://doi.org/10.1093/biolre/iox120
- Data sharing: using blockchain and decentralized data technologies to unlock the potential of artificial intelligence: what can assisted reproduction learn from other areas of medicine?.Fertil. Steril. 2020; 114 (PMID: 33160515): 927-933https://doi.org/10.1016/j.fertnstert.2020.09.160
- Unsupervised Learning: Foundations of Neural Computation.MIT Press, Cambridge, MA1999
- Time-lapse cleavage rating predicts human embryo viability.Physiol. Res. 2012; 61 (http://dx.doi.org/): 513-525
- Artificial intelligence in radiology.Nat. Rev. Cancer. 2018; 18: 500-510https://doi.org/10.1038/s41568-018-0016-5
- Application of a deep learning neural network for the analysis of human blastocyst expansion from defined time-lapse image files.Reprod. BioMed. Online. 2021;
- A prediction model for selecting patients undergoing in vitro fertilization for elective single embryo transfer.Fertil. Steril. 2002; 77: 725-732
- Blastocyst development rate influences implantation and live birth rates of similarly graded euploid blastocysts.Fertil. Steril. 2018; 110: 95-102
- The use of voting ensembles and patient characteristics to improve the accuracy of deep neural networks as a non-invasive method to classify embryo ploidy status.in: ASRM 2021 Scientific Congress & Expo. 2021 Oct 19
- Machine learning: trends, perspectives, and prospects.Science. 2015; 349: 255-260
- Case-based reasoning in IVF: prediction and knowledge mining.Artif. Intell. Med. 1998; 12: 1-24
- Reinforcement learning: a survey.J. Artif. Intell. Res. 1996; 4 (arXiv:cs/9605103doi:10.1613/jair.301. S2CID 1708582): 237-285
- A framework for sensitivity analysis of decision trees. Cent.Eur. J. Oper. Res. 2017; 26 (PMC 5767274. PMID 29375266): 135-159https://doi.org/10.1007/s10100-017-0479-6
- Improving the performance of deep convolutional neural networks (CNN) in embryology using synthetic machine-generated images.Hum. Reprod. 2020; 35
- Using artificial intelligence to avoid human error in identifying embryos.Fertil. Steril. 2020; 113: e45
- An automated smartphone-based diagnostic assay for point-of-care semen analysis.Sci. Transl. Med. 2017; 9 (eaai7863PMID: 28330865; PMCID: PMC5701517): 382https://doi.org/10.1126/scitranslmed.aai7863
- Deep learning mediated single time-point image-based prediction of embryo developmental outcome at the cleavage stage.arXiv. 2020; 08346 ([preprinted arXiv:2006]): 5-21
- Adaptive adversarial neural networks for the analysis of lossy and domain-shifted datasets of medical images.Nat. Biomed. Eng. 2021; 5 (doi:10.1038/s41551-021-00733-w. [Epub 2021 Jun 10]. PMID: 34112997): 571-585
- Can deep learning automatically predict fetal heart pregnancy with almost perfect accuracy?.Hum. Reprod. 2020; 35: 1473
- Automated evaluation of human embryo blastulation and implantation potential using deep-learning.Adv. Intell. Syst. 2020; 2: 1-12
- Eeva™ pregnancy pilot study: a randomized controlled trial of single embryo transfer (SET) on day 3 or day 5 with or without time-lapse imaging (TLI) selection.Fertil. Steril. 2016; 106: e312https://doi.org/10.1016/j.fertnstert.2016.07.886
- Future of automation: use of deep convolutional neural networks (CNN) to identify precise location to perform laser assisted hatching on human cleavage stage embryos.Fertil. Steril. 2020; 114: e144
- Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images.EBioMedicine. 2018; 27: 317-328
- Hajirasouliha, I. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization.NPJ Digit. Med. 2019; 2: 21
- Timing attacks on machine learning: state of the art.in: Bi Y. Bhatia R. Kapoor S. Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, Vol. 1037. 2020: 111-125 (doi:10.1007/978-3-030-29516-5_10. ISBN 978-3-030-29515-8)
- Choosing the best embryo by time lapse versus standard morphology.Fertil. Steril. 2015; 103: 323-332https://doi.org/10.1016/j.fertnstert.2014.11.003
- Automatic grading of human blastocysts from time-lapse imaging.Comp. Biol. Med. 2019; 115 (ISSN 0010-4825)103494https://doi.org/10.1016/j.compbiomed.2019.103494
- The predictive value of using a combined Z-score and day 3 embryo morphology score in the assessment of embryo survival on day 5.Hum. Reprod. 2003; 18: 1299-1306
- An introduction to artificial neural networks in bioinformatics – application to complex microarray and mass spectrometry datasets in cancer studies.Brief Bioinform. 2009; 10 ([Epub 2009 Mar 23]. PMID: 19307287): 315-329https://doi.org/10.1093/bib/bbp012
- Technology readiness levels for machine learning systems.arXiv. Jan. 2021; 11 (2101.03989v1)
- Automated measurements of key morphological features of human embryos for IVF.Med. Image Comput. Assist. Interv. 2020; 12265: 25-35
- Timing of the first zygotic cleavage as a marker of developmental potential of mammalian embryos.Biol. Reprod. 2008; 8 (http://dx.doi.org/): 23-42
- Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes.Reprod. Biomed Online. 2008; 17 (http://dx.doi.org/): 385-391
Lemoigne, Y., Caner, A. Molecular Imaging: Computer Reconstruction and Practice. 2006
- Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization.Fertil. Steril. 2020; 114 ([Epub 2020 Oct 1.] PMID: 33012555): 1026-1031https://doi.org/10.1016/j.fertnstert.2020.06.006
- Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring.Commun. Biol. 2021; 4: 415https://doi.org/10.1038/s42003-021-01937-1
- Development of a dynamic diagnosis grading system for infertility using machine learning.JAMA Netw. Open. 2020; 3 (PMID: 33165608; PMCID: PMC7653500)e2023654https://doi.org/10.1001/jamanetworkopen.2020.23654
- Review of computer vision application in in-vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF.J. Assist. Reprod. Genet. 2021; 38: 1627-1639
- Artificial intelligence-based clinical decision support in modern medical physics: selection, acceptance, commissioning, and quality assurance.Med. Phys. 2020; 47: e228-e235
- Ten simple rules for engaging with artificial intelligence in biomedicine.PLoS Comput. Biol. 2021; 17e1008531https://doi.org/10.1371/journal.pcbi.1008531
- Automated cell division classification in early mouse and human embryos using convolutional neural networks.Neural Comput. Applic. 2020; : 1-12
- Artificial intelligence techniques for embryo and oocyte classification.Reprod. Biomed. Online. 2013; 26 ([Epub 2012 Oct 2.] PMID: 23177416): 42-49https://doi.org/10.1016/j.rbmo.2012.09.015
- The journey toward personalized embryo selection algorithms.Fertil. Steril. 2021; 115 ([Epub 2021 Mar 12.] PMID: 33715873): 898-899https://doi.org/10.1016/j.fertnstert.2021.01.039
- Can deep convolutional neural network (CNN) be used as a non-invasive method to replace preimplantation genetic testing for aneuploidy (PGT-A)?.Hum. Reprod. 2020; 35 (I238–I238)
- Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning.Cytometry Part A. 2017; 91A ([Epub 2017 Aug 22.] PMID: 28834185): 893-900https://doi.org/10.1002/cyto.a.23189
- Feasibility of artificial intelligence for predicting live birth without aneuploidy from a blastocyst image.Reprod. Med. Biol. 2019; 18: 204-211https://doi.org/10.1002/rmb2.12267
- Foundations of Machine Learning.MIT Press, Cambridge, MA2012
- The Synthetic Data Vault.in: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 2016: 399-410https://doi.org/10.1109/DSAA.2016.49
- Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography.Hum. Reprod. 1997; 12: 532-541
- Embryo morphokinetic characteristics and euploidy.Curr. Opin. Obstet. Gynecol. 2018; 30 (PMID: 29664791): 185-196https://doi.org/10.1097/GCO.0000000000000453
- Computational Intelligence: A Logical Approach.Oxford University Press, New York1998
- The cleavage stage embryo.Hum. Reprod. 2012; 27 ([Epub 2012 Jun 29.] PMID: 22752610): i50-i71https://doi.org/10.1093/humrep/des224
- Maturity of oocyte cohort impacts blastocyst development as classified by artificial intelligence (AI).in: ASRM 2021 Scientific Congress & Expo. 2021 Oct 19
- The successful use of pronuclear embryo transfers the day following oocyte retrieval.Hum. Reprod. 1998; 13: 1003-1013
- The morphology of human pronuclear embryos is positively related to blastocyst development and implantation.Hum. Reprod. 2000; 15: 2394-2403
- Relationship between oocyte abnormal morphology and intracytoplasmic sperm injection outcomes: a meta-analysis.Eur. J. Obstet. Gynecol. Reprod. Biol. 2011; 159 ([Epub 2011 Aug 6.] PMID: 21824710): 364-370https://doi.org/10.1016/j.ejogrb.2011.07.031
- Computer Vision.Prentice-Hall, New Jersey2001: 279-325
- A survey on Image Data Augmentation for Deep Learning.J. Big Data. 2019; 6: 60https://doi.org/10.1186/s40537-019-0197-0
- Image Processing, Analysis, and Machine Vision.Thomson, 2008
- Validation of a deep convolutional neural network trained to assess whether an embryo meets criteria for biopsy/cryopreservation using a test set of PGT embryos.Hum. Reprod. 2020; 35: 1257-1258
- Fertility AI Forum Group. AI in the treatment of fertility: key considerations.J. Assist. Reprod. Genet. 2020; 37: 2817-2824
- Semantic segmentation of human oocyte images using deep neural networks.Biomed. Eng. Online. 2021; 20 (doi:10.1186/s12938-021-00864-w. PMID: 33892725; PMCID: PMC8066497): 40
- The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology.Hum. Reprod. 1999; 14: 1318-1323
- Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality.Heliyon. 2021; 7: E06298
- Human sperm morphology analysis using smartphone microscopy and deep learning.Fertil. Steril. 2019; 112: e41
- Automated quality assessment of individual embryologists performing ICSI using deep learning-enabled fertilization and embryo grading technology.Fertil. Steril. 2019; 112: e71
- Single embryo transfer: why and how to identify the embryo with the best developmental potential.Best Pract. Res. Clin. Endocrinol. Metab. 2019; 33: 77-88
- Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer.Hum. Reprod. 2019; 34 (PMID: 31111884; PMCID: PMC6554189): 1011-1018https://doi.org/10.1093/humrep/dez064
- Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes.J. Clin. Epidemiol. 1996; 49 (ISSN 0895-4356): 1225-1231https://doi.org/10.1016/S0895-4356(96)00002-9
- Effects of hidden layers on the efficiency of neural networks.in: IEEE 23rd International Multitopic Conference (INMIC). 2020: 1-6https://doi.org/10.1109/INMIC50486.2020.9318195
- A prediction model for ongoing pregnancy after in vitro fertilization in couples with male subfertility.J. Reprod. Med. 2008; 53: 250-256
- Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF.Hum. Reprod. 2020; 35 (PMID: 32240301; PMCID: PMC7192535): 770-784https://doi.org/10.1093/humrep/deaa013
- Artificial intelligence: non-invasive detection of morphological features associated with abnormalities in chromosomes 21 and 16.Fertil. Steril. 2019; 112: e237-e238