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KEY MESSAGE
Artificial intelligence (AI) has the potential to be used as a tool to assist embryologists in daily activities such as 
performing morphological assessments and in selecting embryos for transfer. AI also has the potential to help 
clinicians make decisions and help patients achieve their goal of having a healthy baby.

ABSTRACT
The goal of an IVF cycle is a healthy live-born baby. Despite the many advances in the field of assisted reproductive 
technologies, accurately predicting the outcome of an IVF cycle has yet to be achieved. One reason for this is the 
method of selecting an embryo for transfer. Morphological assessment of embryos is the traditional method of 
evaluating embryo quality and selecting which embryo to transfer. However, this subjective method of assessing 
embryos leads to inter- and intra-observer variability, resulting in less than optimal IVF success rates. To overcome 
this, it is common practice to transfer more than one embryo, potentially resulting in high-risk multiple pregnancies. 
Although time-lapse incubators and preimplantation genetic testing for aneuploidy have been introduced to help 
increase the chances of live birth, the outcomes remain less than ideal. Utilization of artificial intelligence (AI) has 
become increasingly popular in the medical field and is increasingly being leveraged in the embryology laboratory to 
help improve IVF outcomes. Many studies have been published investigating the use of AI as an unbiased, automated 
approach to embryo assessment. This review summarizes recent AI advancements in the embryology laboratory.
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INTRODUCTION

S ince the late 1970s, when 
the first ‘test-tube baby’ was 
born in England, there have 
been many advances in the 

field of reproductive endocrinology 
and infertility. However, despite many 
attempts to create prediction models, it 
is still a struggle to accurately predict the 
outcome of an IVF cycle.

Initially, prediction models were based 
on well-known statistical models (Bancsi 
et al., 2004; Hunault et al., 2002; Jurisica 
et al., 1998; van Weert et al., 2008). More 
recently, the emerging technologies of 
time-lapse incubators and preimplantation 
genetic testing (PGT) were introduced 
as important achievements in the field, 
with the potential to produce a more 
objective method of selecting embryos 
with the best implantation probability. 
However, at present, there is insufficient 
evidence to recommend the routine use of 
these techniques for the sole purpose of 
improving single embryo transfer live birth 
rates (Khosravi et al., 2019; Tiitinen, 2019). 
Within the last decade, machine learning, 
more specifically convolutional neural 
networks (CNN), have been used to assist 
with medical imaging in a variety of fields, 
such as ophthalmology (Abràmoff et al., 
2016), dermatology (Esteva et al., 2017), 
radiology (Hosny et al., 2018) and pathology 
(Khosravi et al., 2018) (TABLE 1). This 
technology has also been applied in the 
embryology laboratory, aiming to improve 
the selection of a single embryo with the 
best implantation potential to achieve the 
ultimate goal of fertility treatment: the birth 
of a healthy baby (Khorsavi et al., 2019). 
Since artificial intelligence (AI) has found 
a place in IVF, its potential use in nearly 
every aspect of infertility patient care has 
been investigated, including for identifying 
empty or oocyte-containing follicles; 
predicting embryo cell stages, blastocyst 
formation from oocytes, and live birth from 
blastocysts; assessing sperm morphology 
and human blastocyst quality; improving 
embryo selection; developing optimal IVF 
stimulation protocols; and quality control 
(Bormann et al., 2021a; Curchoe and 
Bormann, 2019). The goal of this review is 
to summarize recent advancements using 
AI technology in the embryology laboratory 
(TABLE 2).

AI LEARNING ALGORITHMS

AI is a general concept made up of 
diverse mathematical approaches with 

the capacity to make predictions based 
on complex pattern recognition by 
incorporating the processing power 
of computers (Malik et al., 2021). The 
selected algorithm(s) and the weight 
distribution attributed to its parameters 
define an AI model (Burkov, 2019).

The selection of a machine learning model 
is determined by the intended task (e.g. 
classification versus regression versus 
ranking), the dataset's characteristics 
(e.g. size, labelled/unlabelled data, 
structured versus unstructured data), 
and the planned learning approach (e.g. 
supervised, unsupervised). Based on 
these variables, scientists can choose 
among several different approaches to 
build algorithms or blocks (pipelines) 
of algorithms with different learning 
capabilities (i.e. shallow or deep learning). 
Examples of learning algorithms include 
artificial neural networks (ANN), support 
vector machines (SVM) and decision 
trees, among others (Jordan and Mitchell, 
2015). Selecting machine learning models 
is difficult, which explains why sometimes 
several architectures can be tested at 
once (Burkov, 2019). Chavez-Badiola 
et al. (2020b) presented one such 
example as a proof of concept when five 
different algorithms were trained and 
tested on two datasets to assess their 
generalization capabilities to predict 
embryo implantation. This study presents 
an example of how this approach could 
guide scientists during the selection of a 
model toward clinical implementation. 
In this study, however, the limited size 
of the datasets could explain the poor 
performance of ANN, making a real 
comparison against ANN potentially 
inadequate.

Several other studies have tested 
multiple architectures (Miyagi et al., 
2019; Morales et al., 2008), including the 
description by VerMilyea et al. (2020) of 
how different model architectures and 
hyperparameters (i.e. loss function and 
optimization methods) were considered 
before building their final architecture. 
Overall, results from these studies 
illustrate how different algorithms, even 
when trained on identical datasets, 
result in different performances, 
underlining the essential importance 
of a well-designed mathematical and 
computational approach.

AI algorithm training and validation
As problem complexity scales, most 
learning algorithms begin to show 

their inherent limits. One outstanding 
exception is ANN. ANN are designed to 
solve challenging classification problems 
and process large amounts of complex 
(non-linear) features simultaneously 
(Lancashire et al., 2009), which in 
turn tend to benefit from large training 
datasets. Disadvantages of ANN include 
their tendency to overfit and the ‘black 
box’ nature of their hidden layers (Tu, 
1996).

ANN are a family of algorithms that 
includes CNN, which stand out for image 
analysis due to their ability to perform 
numerical matrix analysis, in contrast to 
non-CNN, which allow other information 
as input (e.g. age). As expected, CNN 
have become a common recourse for 
embryo analysis based on static images 
and time-lapse videos, as confirmed 
by the recent number of publications 
describing their implementation as 
either stand-alone solutions (Bormann 
et al., 2020a; Chen et al., 2019) or part 
of a pipeline of algorithms allowing for 
efficient image analysis (Chavez-Badiola 
et al., 2020a; Kragh et al., 2019).

The next step after selecting a learning 
algorithm is its training. This involves 
adjusting the model to minimize the 
error of the output using the values of 
the data provided as a ground truth (i.e. 
training), and a second step where the 
trained model is exposed to ‘unseen’ 
data to assess its performance (i.e. 
validation). The relevance of a high-
quality dataset cannot be overestimated, 
because problems related to training 
on suboptimal datasets are numerous. 
One example is the result of training 
on an unbalanced dataset, which can 
lead to unreliable results (Chawla et al., 
2004), which may have been the case 
in a study by Tran et al. (2019). In this 
study, the high proportion of embryos 
with negative outcomes outweighed 
those with positive outcomes, resulting 
in a deeply unbalanced dataset, perhaps 
not representative of the problem, 
which in turn led to an almost unrealistic 
performance (area under the ROC curve 
of 0.93) (Kan-Tor et al., 2020a; Tran 
et al., 2019).

The size of a dataset is also relevant. 
However, encountering high-quality 
and large datasets is uncommon in 
the field of reproductive medicine due 
to a lack of standardization in data 
collection and storage, the routine use of 
manual annotations, and the challenges 
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TABLE 1  GLOSSARY OF ARTIFICIAL INTELLIGENCE (AI) TERMINOLOGY

AI terminology Abbreviation Definition References

Adaptive 
adversarial neural 
networks

AANN Method of deep learning that can be used with unlabelled data from unseen domain-shifted datasets 
to adapt pretrained supervised networks to new distributions, even when data from the original 
distribution are not available.

Kanakasabapathy 
et al. (2021)

Adversarial 
machine learning

AML A machine learning technique that attempts to fool models by supplying deceptive input. Kianpour and Wen, 
2020

Artificial 
intelligence

AI Any intelligence demonstrated by machines, in contrast to the natural intelligence displayed by 
humans and other animals.

Malik et al. (2021); 
Poole et al. (1998)

Artificial neural 
network

ANN A highly abstracted and simplified model compared to the mammalian brain, used in machine learn-
ing. A set of units receives input data, performs computations on them, and passes them to the next 
layer of units. The final layer represents the answer to the problem.

Curchoe and 
Bormann (2019)

Black box – The calculations performed by some deep learning systems between input and output are not easy 
(and potentially impossible) for humans to understand.

Curchoe and 
Bormann (2019)

Computer vision CV An interdisciplinary scientific field that deals with how computers can be made to gain high-level 
understanding from digital images or videos.

Sonka et al. (2008)

Convolutional 
neural network

CNN (or 
ConvNet)

In deep learning, a class of deep neural networks, mostly applied to analysing visual imagery. Curchoe and 
Bormann (2019)

Data 
augmentation

– In data analysis, techniques used to increase the amount of data. It helps reduce overfitting when 
training a machine learning.

Shorten and 
Khoshgoftaar (2019)

Decision tree – A flow chart-like structure in which each internal node represents a ‘test’ on an attribute, each 
branch represents the outcome of the test, and each leaf node represents a class label. The paths 
from root to leaf represent classification rules.

Kamiński et al. (2017)

Deep learning DL A specific subfield of deep learning. It is a process by which a neural network becomes sensitive 
to progressively more abstract patterns. Hundreds of successive layers of data representations are 
learned automatically through exposure to training data.

Curchoe and 
Bormann (2019)

Feature extraction – In machine learning, a feature is an individual measurable property or characteristic of a phenom-
enon. Features are intended to be informative and non-redundant, facilitating the subsequent 
learning and generalization steps, and in some cases leading to better human interpretations.

Bishop (2006)

Generative 
adversarial network

GAN Two neural networks contest with each other in a game (in the form of a zero-sum game, where one 
agent's gain is another agent's loss).

Goodfellow et al. 
(2014)

Ground truth – Information that is known to be real or true, provided by direct observation and measurement (i.e. 
empirical evidence) as opposed to information provided by inference.

Lemoigne and Caner 
(2006)

Hidden layers – An internal layer of neurons in an artificial neural network, not dedicated to input or output. Uzair and Jamil (2020)

Image segmen-
tation

– The process of partitioning a digital image into multiple segments (sets of pixels, also known as 
image objects). The goal of segmentation is to simplify and/or change the representation of an image 
into something that is more meaningful and easier to analyse.

Shapiro and Stockman 
(2001)

Machine learning ML Algorithms that find patterns in data without explicit instructions. Machine learning is a single con-
tributing entity for AI technology.

Curchoe and 
Bormann (2019)

Overfitting – The production of an analysis that corresponds too closely or exactly to a set of data and may there-
fore fail to fit additional data or predict future observations reliably.

Chicco (2017)

Prediction models – Uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but 
predictive modelling can be applied to any type of unknown event, regardless of when it occurred.

Geisser (1993)

Reinforcement 
learning

RL An area of machine learning concerned with how software agents ought to take actions in an envi-
ronment to maximize some notion of cumulative reward.

Kaelbling et al. (1996)

Shallow learning – A type of machine learning where we learn from data described by predefined features. Bengio et al. (2013)

Supervised 
learning

SL The machine learning task of learning a function that maps an input to an output based on example 
input–output pairs. It infers a function from labelled training data consisting of a set of training 
examples.

Hinton and Sejnowski 
(1999); Mohri et al. 
(2012)

Support vector 
machines

SVM In machine learning, support vector machines are supervised learning models with associated learn-
ing algorithms that analyse data used for classification and regression analysis.

Cortes and Vapnik 
(1995)

Synthetic data – Any production data applicable to a given situation that are not obtained by direct measurement. Patki et al. (2016)

Test dataset – The sample of data used to provide an unbiased evaluation of a final model fit on the training 
dataset.

Curchoe and 
Bormann (2019)

Training dataset – The sample of data used to fit the model. The actual dataset that we use to train the model (weights 
and biases in the case of neural networks). The model sees and learns from this data.

Curchoe and 
Bormann (2019)

Transfer learning TL A technique in machine learning where the algorithm learns one task, and builds on that knowledge 
while learning a different, but related, task. Transfer learning is an alternative approach to help miti-
gate the large, manually annotated datasets needed for training an AI.

Curchoe and 
Bormann (2019)

Underfitting – Occurs when a statistical model cannot adequately capture the underlying structure of the data. Chicco (2017)

Unsupervised 
learning

UL A type of self-organized learning that helps find previously unknown patterns in datasets without 
pre-existing labels. It is also known as self-organization and allows modelling probability densities of 
given inputs.

Hinton and Sejnowski 
(1999)

Validation dataset – The sample of data used to provide an unbiased evaluation of a model fit on the training dataset 
while tuning model hyperparameters. The evaluation becomes more biased as skill on the validation 
dataset is incorporated into the model configuration.

Curchoe and 
Bormann (2019)
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TABLE 2  LIST OF KEY ADVANCEMENTS IN THE AUTOMATION OF IVF LABORATORY PROCEDURES WITH THE AID OF AI

Cell type ART procedure Summary of advancement References

Spermatozoa Sperm count Automated calculation of sperm concentration on a handheld device. Kanakasabapathy et al. (2017)

Sperm motility assessment Automated calculation of sperm motility on a handheld device. Kanakasabapathy et al. (2017)

Forward progression score Automated measurement of sperm velocity and classification of 
individual sperm forward progression score.

Goodsen et al. (2017); Kanakasabapathy 
et al. (2017)

DNA fragmentation assay Automated measurement of sperm DNA fragmentation on a 
handheld device.

Dimitriadis et al. (2019a)

Sperm viability assessment Automated differential count of live–dead sperm staining. Dimitriadis et al. (2019a)

Sperm morphology measure-
ment

Automated classification and measurement of normal and abnormal 
sperm morphology forms.

Mirsky et al. (2017); Thirumalaraju et al. 
(2019a)

Oocyte Oocyte morphology classifi-
cation

Identification and classification of oocyte morphological features. Dickinson et al. (2020); Manna et al. (2013); 
Targosz et al. (2021)

Oocyte quality assessment Association of oocyte morphology with pronuclear development and 
subsequent embryo development.

Kanakasabapathy et al. (2020a); Manna 
et al. (2013); Sacha et al. (2021)

Oocyte maturation assess-
ment

Automated identification of extruded polar body in metaphase II 
oocytes.

Dickinson et al. (2020)

Alignment of oocyte for ICSI Identification of proper location to inject spermatozoa into oocytes 
during ICSI.

Dickinson et al. (2020)

Pronuclear 
stage

Fertilization assessment Automated fertilization assessment 14-18 h post-insemination. Dimitriadis et al. (2019b); Kanakasabapathy 
et al. (2020b)

Pronuclear stage morphology 
classification

Segmentation and classification of pronuclear stage morphologic 
features.

Zhao et al. (2021)

Pronuclear stage quality 
assessment

Prediction of embryo development at the pronuclear stage based on 
cytoplasmic movement.

Coticchio et al. (2021)

Assessment of ICSI perfor-
mance

Automated monitoring of individual embryologists performing ICSI 
using deep-learning enabled fertilization assessment.

Thirumalaraju et al. (2019b)

Cleavage stagePredict day 5 embryo devel-
opment

Prediction of blastocyst-stage development on Day 3 of development 
using extracted features, static images and time-lapse imaging data 
from cleavage-stage embryos.

Bortoletto et al. (2019); d'Estaing et al. 
(2021); Kanakasabapathy et al. (2020a); 
Liao et al. (2021); Wang et al. (2018)

Predict implantation potential Cleavage-stage prediction of embryo implantation using extracted 
features in a decision tree model and from direct learning using static 
images.

Bormann et al. (2021a); Carrasco et al. 
(2017)

Monitor embryo culture 
environment

Development of a KPI that associates the development prediction of 
cleavage-stage embryos with implantation outcomes.

Bormann et al. (2021a)

Predict ploidy status of 
embryo

Non-invasive embryo ploidy prediction using static cleavage-stage 
embryo images.

Meyer et al. (2020)

Identify correct location to 
perform assisted hatching

Identification of proper location to perform laser-assisted hatching 
based on cleavage-stage embryo morphology.

Kelly et al. (2020)

Embryo identification and 
witnessing

Utilization of a CNN to assess cleavage-stage embryo quality and 
develop a unique key specific to each embryo for purposes of tracking 
and witnessing them throughout culture.

Bormann et al. (2021b)

Blastocyst 
stage

Blastocyst-stage classification Classification and grading of blastocyst-stage embryos based on 
morphology and implantation outcome.

Bormann et al. (2020b); Khosravi et al. 
(2019); Malmsten et al. (2020); Leahy et al. 
(2020); Thirumalaraju et al. (2021); VerMily-
ea et al. (2020)

Vitrification and embryo biop-
sy decision-making

Use of static images to determine whether a blastocyst meets devel-
opmental criteria for vitrification and/or trophectoderm biopsy.

Bormann et al. (2020b); Souter et al. (2020)

Select embryo(s) for transfer Prediction and selection of blastocyst-stage embryos for transfer 
based on static images, developmental size, trophectoderm expansion 
and proteomics.

Bori et al. (2020a, 2020b); Bormann et al. 
(2020a); Fitz et al. (2021); Huang et al. 
(2021); Louis et al. (2021); Tran et al. (2019)

Predict ploidy status of 
embryo

Non-invasive embryo ploidy prediction using static blastocyst-stage 
embryo images and patient characteristics.

Chavez-Badiola et al. (2020a); Jiang et al. 
(2021); Meyer et al. (2020); Pennetta et al. 
(2018)

Quality assurance monitoring 
of laboratory procedures

Use of implantation prediction models to assess embryo selection, 
vitrification, warming and transfer competencies of embryologists and 
physicians.

Dimitriadis et al. (2021)

Embryo identification and 
witnessing

Utilization of a CNN to assess blastocyst-stage embryo quality and 
develop a unique key specific to each embryo for purposes of tracking 
and witnessing them throughout culture.

Kanakasabapathy et al. (2020c)

AI = artificial intelligence; ART = assisted reproductive technology; CNN = convolutional neural network; ICSI = intracytoplasmic sperm injection; KPI = key performance 
indicator.
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related to data sharing (Curchoe, 
2021; Hickman et al., 2020). There 
are, however, strategies to optimize a 
dataset's size. Examples include the 
recourse to data augmentation made by 
VerMileya et al. (2020), where images 
in their training set were subjected to 
manipulations (e.g. rotations, reflections, 
jitter) (Kanakasabapathy et al., 2021; 
VerMileya et al., 2020), allowing the 
training examples to multiply without a 
real increase in the size of the dataset. 
In this context, the use of synthetic data 
seems a promising tool to generate large, 
diverse, representative and balanced 
datasets without the constraint of 
accessing analogue clinical data. Still, 
understanding its inherent challenges will 
become paramount to making best use 
of this attractive approach (Chen et al., 
2021). Another proposed solution to 
approach a limited-sized dataset is a top-
down feature extraction (Chavez-Badiola 
et al., 2020b), which relies on the use of 
customized feature extractors designed 
with knowledge of the problem, as 
opposed to CNN, which require a lot of 
data to determine the feature extractors 
to use (bottom-up approach).

In brief, most training datasets used 
in AI protocols are labelled data, 
i.e. supervised learning. Labelling is 
performed by humans and thus is very 
subjective. In addition, if clinical outcome 
data are used, humans are selecting the 
embryos for transfer. The requirement 
for heterogeneous diverse training data, 
including an ethnically and racially diverse 
population of patients, is essential. A 
balanced set of data is also important 
to eliminate bias in AI learning (Swain 
et al., 2020). Unsupervised learning is 
an attractive alternative that needs to be 
explored.

Clinical training and validation
Validation as a part of the training 
process should be separated from 
the validation of a system in a clinical 
setting (Curchoe et al., 2020). AI should 
be built to become robust enough to 
perform beyond its training dataset. But 
as described recently by Meseguer and 
Valera (2021), when a system is deployed 
in real life, specific conditions from new 
datasets, including the wide range of 
characteristics that surround clinical and 
laboratory procedures, may lead to an AI 
system's suboptimal and sometimes even 
erratic performance, a common machine 
learning problem known as under-
specification (D'Amour et al., 2020).

Most current AI models for embryo 
selection rely on expert human 
supervision (supervised learning). One 
notable exception is the study by 
Kanakasabapathy et al. (2021), where the 
authors present an adaptive adversarial 
neural network (AANN), which uses a 
form of unsupervised learning called 
adversarial learning. In this study, AANN 
performance was tested when using 
different microscopes on a variety of 
samples including human embryos, 
spermatozoa and blood cells. The 
authors compared a supervised learning 
model against their AANN and showed 
how the latter managed to maintain 
performance despite profound variations 
in image quality, suggesting AANN could 
overcome training bias and task-irrelevant 
feature information incorporated into 
the model. By training neural networks 
to focus on relevant features alone, AI 
might show better performance when 
deployed through different laboratory 
settings (Kanakasabapathy et al., 2021). 
Because this study only discriminates 
between blastocyst and no blastocysts, 
its clinical application during the embryo 
selection process is still to be tested. 
This, however, presents an example of 
how AI's training could be designed to 
become self-supervised.

Learning algorithms are attractive 
because they are expected to 
continuously improve performance as 
the available dataset grows. However, 
the brute force of a large dataset 
alone does not guarantee improved 
performance; if further training is not 
carefully undertaken, it risks performance 
degradation (Lavin et al., 2021) and the 
threat of data poisoning (Schwarzchild 
et al., 2021), whether intentional or 
not. Understanding the risks associated 
with further training is key to assessing 
a model's robustness (e.g. internal 
validation, external validation). Moreover, 
continuously evaluating its performance 
after tuning according to individual 
practices through a standardized quality 
assurance process is paramount, or at 
least highly desirable when considering 
the clinical readiness of an AI system 
(Curchoe et al., 2020; Mahadevaiah 
et al., 2020).

AI APPLICATION IN ASSISTED 
REPRODUCTIVE MEDICINE

Both invasive and non-invasive methods 
are used to select competent, healthy 
gametes for combination during 

assisted reproductive technology 
(ART) procedures. Every stage of 
ART treatment (fertilization, embryo 
development, implantation, healthy 
clinical pregnancy) depends on high-
quality, mature, genetically normal 
spermatozoa and oocytes. Morphology 
of oocytes (cumulus–oocyte complex, 
polar body and ooplasm defects) and 
motility characteristics of spermatozoa 
(swim-up, gradient centrifugation or 
laminar flow microchannels on chip, 
and polyvinylpyrrolidone challenge) 
combined with morphology (vacuoles, 
head shape, and midpiece and tail 
defects) are routinely used to select 
gametes for insemination. Unfortunately, 
developmentally incompetent oocytes 
may exhibit the same morphology as 
competent ones. In addition, even high-
powered microscopy, such as that used 
for intracytoplasmic morphologically 
selected sperm injection (IMSI), 
cannot detect DNA fragmentation in 
spermatozoa.

AI application on spermatozoa
In reproductive urology, early AI 
applications focused on semen 
parameters, but the technology has 
advanced to include the development 
of automated sperm detection and 
semen analyses. AI technology for semen 
analysis, sperm viability and DNA integrity 
has even been bridged with external 
hardware devices and smartphone 
(mobile) applications (Dimitriadis et al., 
2019a; Kanakasabapathy et al., 2017).

Goodson et al. (2017) classified 
single spermatozoa as progressive, 
intermediate, hyperactivated, slow or 
weakly motile using SVM with 89.9% 
accuracy. Mirsky and colleagues 
employed interferometric phase 
microscopy along with SVM to develop a 
model to assess sperm morphology and 
classify spermatozoa into ‘good’ or ‘bad’ 
morphology with over 88% accuracy 
(Mirsky et al., 2017). Thirumalaraju et al. 
(2019a) used smartphone microscopy in 
conjunction with deep transfer learning 
to develop an inexpensive system 
that can accurately measure sperm 
morphology based on the Kruger strict 
criteria in the fifth edition of the WHO 
manual.

Ovarian stimulation management
Infertility is a multifactorial disease, 
which makes diagnosis and treatment 
complicated. Liao et al. (2020) have 
shown that a machine learning-derived 
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algorithm is useful to help clinicians 
make an efficient and accurate initial 
judgement on the condition of patients 
with infertility. In their study, the medical 
records of more than 60,000 infertile 
couples were evaluated using a grading 
system that classified patients into five 
grades, ranging from A to E. The worst 
grade, E, represented a 0.90% pregnancy 
rate, while the pregnancy rate in the A 
grade was 53.8%. The cross-validation 
results showed that the stability of the 
system was 95.9%.

Letterie and MacDonald (2020) 
evaluated a computer decision support 
system for day-to-day management of 
ovarian stimulation during IVF following 
key decisions made during an IVF 
cycle: (i) stop stimulation or continue 
stimulation; if the decision was to stop, 
then the next automated decision was 
to (ii) trigger or cancel. If the decision 
was to continue stimulation, then the 
next key decisions were (iii) the number 
of days to follow-up and (iv) whether 
any dose adjustment was needed. The 
authors used data derived from an 
electronic medical records system of a 
female population undergoing IVF cycles 
and oocyte cryopreservation to include 
the patient demographics, past medical 
history and infertility evaluation, including 
diagnosis, laboratory testing for ovarian 
reserve, and any radiological studies 
pertinent to a diagnosis of infertility. The 
four key decisions during the process 
of ovarian stimulation and IVF were 
compared to expert decisions across 
12 providers; they were found to have a 
sensitivity of 0.98 for trigger and 0.78 for 
cycle cancellation.

AI application on oocytes
Ovarian stimulation yields oocytes 
at various stages of meiotic maturity. 
Identification of metaphase II (MII) 
(extruded polar body), metaphase I (MI) 
(no polar body), germinal vesicle (GV) 
(germinal vesicle indicative of prophase I), 
giant MII oocytes and other abnormalities 
is primarily performed by embryologists; 
however, nuclear and cytoplasmic 
maturity cannot be assessed. Non-
invasive AI methods to evaluate oocyte 
competency could become an important 
selection and prediction tool to reduce 
the number of embryos created and 
wasted (of paramount importance in 
countries that restrict supernumerary 
embryos), to reduce the number of 
embryos for trophectoderm (TE) biopsy 
and PGT, and to provide the prognosis of 

the success of an IVF cycle. In the case 
of donor egg cycles, a tool to objectively 
assess oocyte quality and subsequent 
fertilization potential may be very 
valuable to intended parents for psycho-
social reasons. Additionally, experimental 
and research procedures like in-vitro 
maturation (IVM) of oocytes, somatic 
cell nuclear transfer and reprogramming, 
in-vitro gametogenesis (IVG), and more 
would benefit from prediction and 
selection AI systems.

In 2011, Setti and colleagues performed a 
meta-analysis to identify the relationship 
between oocyte morphology and ICSI 
outcomes (Setti et al., 2011). Their 
study demonstrated that the presence 
of a large first polar body and a large 
perivitelline space and the inclusion 
of refractile bodies or vacuoles are 
associated with decreased oocyte 
fertilization. In a later study, Manna 
et al. (2013) performed texture analysis 
of 269 oocyte images and tracked the 
corresponding embryo development. 
Texture features were used with a neural 
network to predict the outcome of 
a given cycle, meaning that multiple 
transfers were present in the data used, 
for an AUC of 0.80. In 2021, Targosz 
and colleagues tested 71 deep neural 
network models for semantic oocyte 
segmentation (Targosz et al., 2021). They 
trained their algorithm to classify the 
following oocyte morphological features: 
clear cytoplasm, diffuse cytoplasmic 
granularity, smooth endoplasmic 
reticulum cluster, dark cytoplasm, 
vacuoles, first polar body, multipolar 
body, fragmented polar body, perivitelline 
space, zona pellucida, cumulus cells and 
the GV. In this study, the top training 
accuracy (ACC) reached about 85% for 
training patterns and 79% for validation.

In 2020, Kanakasabapathy and colleagues 
trained a CNN to predict fertilization 
potential (two-pronuclear [2PN] or non-
2PN [pronuclear formation]) from oocyte 
images and to identify oocytes with the 
highest fertilization potential >86% of the 
time (Kanakasabapathy et al., 2020a). 
Results from this study allow for the 
development of novel quality assurance 
tools used to monitor oocyte stimulation 
regimens, assess ICSI performance, 
maintain optimal fertilization and embryo 
culture conditions, and evaluate oocyte 
vitrification and warming procedures. 
This oocyte quality algorithm was helpful 
in identifying an association between 
oocyte morphology and subsequent 

embryo development (Sacha et al., 
2021).

Dickinson et al. (2020) used deep CNN 
to locate the first extruded polar body, 
which allowed them to distinguish 
mature, MII oocytes from MI and GV 
stage oocytes. Pinpointing the location of 
the extruded polar body also allowed this 
algorithm to identify the correct location 
on the oocyte to inject spermatozoa 
for ICSI. In this study, over 14,000 
images of MII oocytes were used for 
training, validation and testing. The deep 
learning CNN was able to correctly 
identify the location of the polar body 
and the corresponding location for 
sperm injection for a test set of 3888 
oocytes with 98.9% accuracy with a 95% 
confidence interval (CI) ranging between 
98.5% and 99.2% (Dickinson et al., 
2020).

AI application on pronuclear-stage 
embryos
Normal fertilization follows a definite 
course of events. Oocytes show circular 
waves (Payne et al., 1997) of granulation 
within the ooplasm after ICSI. During 
this granulation phase, the sperm head 
decondenses and the second polar 
body is extruded. This is followed by 
the formation of the male pronucleus. 
At about the same time, the female 
pronucleus forms and is drawn toward 
the male pronucleus until apposition is 
achieved. Both pronuclei then increase in 
size, and their nucleoli move around and 
arrange themselves near the common 
junction. Only zygotes with two distinct 
pronuclei are considered normal and 
appropriate for transfer. It is critical that 
embryologists assess fertilization status 
correctly, as there is only a small window 
of time in which pronuclei can be 
properly counted.

Fertilization checks and embryo 
quality assessments require manual 
examination, status recording and 
embryo development scoring. These 
processes are labour-intensive and 
subjective. In 2019, Dimitriadis and 
colleagues described the development 
of a CNN that can distinguish between 
2PN and non-2PN zygotes at 18 h 
post-insemination with >90% accuracy 
(Dimitriadis et al., 2019b). This system 
can be used as an embryologist aid to 
help confirm the fertilization assessment 
of each oocyte. It can also be used 
to monitor individual embryologists 
performing ICSI in a clinical setting for 
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advanced quality assurance to improve 
patient outcomes (Bormann et al., 
2021a; Thirumalaraju et al., 2019b).

Several studies have shown that 
morphological features specific to the 
pronuclear-stage embryo can be used to 
assess embryo quality and developmental 
potential. These grading systems factor 
in the size, shape and alignment of 
pronuclei. They also factor in the number 
and distribution of nucleoli and the 
overall appearance of the cytoplasm 
(Scott and Smith, 1998; Scott et al., 
2000; Tesarik and Greco, 1999). These 
morphological grading systems have also 
been shown to help aid embryologists in 
selecting embryos with high implantation 
potential (Lan et al., 2003; Zollner et al., 
2003). Manually scoring zygotes is a 
labour-intensive and subjective activity. 
As such, few practices continue to 
assess this critical stage of development. 
However, with the use of AI, these 
predictive features may be readily 
incorporated into an embryo selection 
algorithm.

In 2021, Zhao and colleagues used 
CNN for segmentation of pronuclear-
stage embryos. They examined the 
morphokinetic patterns of the zygote 
cytoplasm, zona pellucidae and 
pronuclei. Their manually annotated 
test set had precision of >97% for 
the cytoplasm, 84% for the pronuclei 
and approximately 80% for the zona 
pellucida. The authors concluded that 
their CNN system has the potential 
to be incorporated in clinical practice 
for pronuclear-stage segmentation as 
a powerful tool with high precision, 
reproducibility and speed (Zhao et al., 
2021). Early parameters of zygotic 
(cytoplasmic movement) development, 
analysed by AI-powered methods, 
have been shown to be predictive of 
blastocyst development. Compared to 
human evaluation and prediction using 
morphological parameters, AI-based 
methods using cytoplasmic kinetics 
showed on average 10% higher accuracy 
(Coticchio et al., 2021).

AI application on cleavage-stage 
embryos
Embryo transfers are generally performed 
at the cleavage or blastocyst stage of 
development. Cleavage-stage embryos 
are generally selected for transfer based 
on only three features: blastomere cell 
count, percentage of overall cytoplasmic 
fragmentation and degree of asymmetry 

between blastomeres (Prados et al., 
2012). These grades are assigned by visual 
examination of the embryos and have 
been shown to be highly subjective in 
nature.

The introduction of time-lapse imaging 
(TLI) technology has allowed for both 
automated and manual assessments of 
embryo development at precise times 
and under controlled environments 
(Azzarello et al., 2012; Cruz et al., 2012; 
Hlinka et al., 2012; Lechniak et al., 2008; 
Lemmen et al., 2008). However, most 
of the TLI algorithms have only shown 
promising results in identifying embryos 
with low developmental potential. The 
incorporation of TLI systems to standard 
manual embryo assessments did not 
improve overall clinical outcomes, 
nor did they decrease the amount of 
time embryologists spent assessing 
embryo morphology (Chen et al., 2017; 
Conaghan et al., 2013; Kaser et al., 
2016; Kirkegaard et al., 2015).

Dimitriadis et al. (2017) demonstrated a 
fast and simple cohort embryo selection 
(CES) method for selecting cleavage-
stage embryos that will develop into 
high-quality blastocysts. This study 
demonstrated the ability of embryologists 
to quickly identify high-quality cleavage-
stage embryos when all embryos in the 
cohort were simultaneously compared in 
a single image. This method of selection 
outperformed traditional methods of 
cleavage-stage embryo ranking based 
on both morphology and adjunctive 
morphokinetic TLI parameters. This 
method is excellent at identifying high-
quality embryos from a cohort; however, 
this method of selection is subjective and 
lacks consistency between operators.

Computer vision technology has been 
proposed as a solution to overcome the 
labour constraints and subjective nature 
of assessing and selecting embryos based 
on morphology and morphokinetic 
measurements. Kanakasabapathy and 
colleagues used deep learning CNN to 
train and validate embryo assessments on 
Day 3 embryo images based on embryo 
developmental outcomes recorded on 
Day 5 of culture. This algorithm was 
trained to make the following Day 5 
developmental predictions: embryo 
arrest, morula, early blastocyst, full 
blastocyst and high-quality blastocyst. 
Using a test set of 748 embryos, the 
accuracy of the algorithm in predicting 
blastocyst development at 70 hpi was 

71.9% (95% CI 68.4–75.2%) (Bortoletto 
et al., 2019; Kanakasabapathy et al., 
2020c).

To evaluate the potential improvement in 
predictive power, Kanakasabapathy et al. 
(2020c) also compared the accuracy 
of predictions by embryologists in 
identifying embryos that will eventually 
develop into blastocysts when presented 
with embryo morphology imaged 
on Days 2 and 3 of development. 
Additionally, their performance was 
evaluated with and without the use of 
the Eeva three-category TLI algorithm 
that uses P2 (duration of the 2-cell 
stage) and P3 (duration of the 3-cell 
stage) to predict blastocyst development 
(VerMilyea et al., 2014). The neural 
network significantly outperformed the 
embryologists in identifying embryos that 
will develop into blastocysts correctly 
(P < 0.0001) and the overall accuracy in 
prediction, regardless of the evaluated 
methodology (P < 0.0001). This was 
the first AI-based system for predicting 
the developmental fate of cleavage-
stage embryos (Kanakasabapathy et al., 
2020c).

Bormann et al. (2021a) described an 
early warning system for using cleavage-
stage embryos and statistical process 
controls for detecting clinically relevant 
shifts due to laboratory conditions. This 
study presented a novel key performance 
indicator (KPI) for monitoring embryo 
culture conditions at the cleavage stage 
of development. This AI-based KPI 
predicted the percentage of cleavage-
stage embryos that would develop into 
high-quality blastocysts on Day 5 of 
development. When compared with 
five established cleavage-stage KPI, this 
AI-based KPI for predicting high-quality 
blastocyst formation had the highest 
association with ongoing pregnancy rates 
(R2 = 0.906). This is the first AI-based 
cleavage-stage KPI demonstrated to 
detect changes in a culture environment 
that resulted in a shift in pregnancy 
outcomes.

Carrasco et al. (2017) used 800 cleavage-
stage embryo images with decision 
tree methods and statistical analysis of 
features to determine the implantation 
potential of cleavage-stage embryos. 
Wang et al. (2018) extracted features 
from textures from 206 micrographs of 
early embryos (2 h of development). SVM 
were used (10-fold cross-validation) to 
achieve 77.7% accuracy and 0.78 of AUC 
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to predict the early embryo development 
stage (initial and Days 1, 2, 3 and 4).

Using CNN, Meyer et al. (2020) were 
able to classify Day 3 cleavage-stage 
embryo images as aneuploid or euploid 
with a high specificity and thus were able 
to sufficiently identify 85.5% of aneuploid 
embryos. These results demonstrate 
the ability of CNN to identify non-
invasive markers for detecting genetically 
abnormal embryos. Collectively, 
these studies show that a variety of AI 
techniques can be used to extract unique 
features from cleavage-stage embryos, 
which may be used for classification, 
assessment ranking or to aid in clinical 
decision-making.

Kelly and colleagues used CNN to 
identify safe regions on a cleavage-
stage embryo to perform laser-assisted 
hatching. This study utilized more than 
13,000 annotated images of cleavage-
stage embryos to develop an algorithm 
that identified the largest perivitelline 
space region or atretic/fragmented 
blastomeres. These regions of the 
cleavage-stage embryos were considered 
the safest at which to perform laser-
assisted hatching. The AI-trained network 
was tested on almost 4000 cleavage-
stage images and had 99.4% accuracy 
with a 95% CI ranging between 99.1% 
and 99.6% (Kelly et al., 2020).

Embryo witnessing is a critical step in the 
embryo transfer process. Traditionally, 
embryo identification is performed 
by two embryologists to ensure the 
correct embryo has been selected 
for transfer. However, as gametes and 
embryos are moved from one dish to 
another during an ART cycle, there is 
still the possibility of misidentification. 
Bormann and colleagues used CNN 
to classify images of embryos captured 
on Day 3 of development at 60 and 
64 h post-insemination. The algorithm 
processed embryo images for each 
patient and produced a unique key that 
was associated with the patient ID at 
the initial evaluation. At the later time, 
images were captured and CNN were 
used to match the embryo morphology 
with the initial image. The accuracy of 
the CNN in correctly matching embryos 
at the different time periods on Day 3 
was 100% (95% CI 99.1–100%, n = 412) 
(Bormann et al., 2021b). This technology 
offers a robust witnessing step based on 
unique morphological features that are 
specific to each individual embryo.

AI application on blastocyst-stage 
embryos
A key question about blastocyst 
assessment needs to be answered: When 
do we evaluate blastocysts? Because 
blastocyst development is a dynamic 
process, do we evaluate and grade 
blastocysts when they are exhibiting 
the ‘best’ appearance? Or should we 
evaluate them at a particular time? 
This question has yet to be answered 
by existing AI applications, which have 
used both fixed and flexible time-based 
methods of evaluation.

Another issue with blastocyst assessment 
involves grading. For instance, the 
problem with using Gardner-type 
blastocyst grading to assess embryo 
quality is that it is subjective and does 
not include quantitative parameters. It 
is a visual estimate of the number, size 
and morphology of the inner cell mass 
(ICM) and TE cells. On the other hand, 
blastocyst expansion can be easier to 
standardize if measurement tools and 
volume ratios are used. The quality of 
the ICM is estimated by the number 
and compaction of the cells. However, 
the minimum number of ICM cells 
necessary to develop into a viable human 
fetus is unknown. In addition, the ICM 
is a cocktail of pluripotent (epiblast) and 
primitive endoderm (hypoblast) cells. The 
size of the ICM alone does not indicate 
the composition of the cells within.

Assessing TE cells is more challenging, as 
the cell number, shape, nuclear content 
and position in the expanding blastocyst 
are not standardized. AI methods that 
use segmentation of the blastocyst 
will enable us to objectively score TE 
complement. It is easier to judge the 
compaction of the ICM than it is to 
assess TE quality.

The bigger question is, do we need to 
assess blastocysts at a particular time 
point? We know that Day 5 and Day 6 
blastocysts have different outcomes, 
even when using fresh or frozen embryo 
transfer cycles (Irani et al., 2018). This is 
especially important to consider when 
developing AI algorithms that use a single 
2D blastocyst image. We must consider 
the speed and timing of developmental 
events, particularly compaction and 
blastulation.

For successful implantation, both 
blastocyst cell types (ICM and TE) are 
required. Because current blastocyst 

grading systems are very simple, it 
is no surprise that they are not very 
informative when used to predict 
implantation. More complex and detailed 
blastocyst grading systems correlate 
very well with implantation potential 
and ploidy assessment. In their recent 
paper, Zhan et al. (2020b) converted 
alphanumeric blastocyst grades into 
a numeric score for use in statistical 
analysis and correlations. By using 
AI, it might be possible to strengthen 
the correlation between blastocyst 
assessment and outcome in a more 
objective manner. Also, the ability of 
AI blastocyst applications predicted 
by early developmental versus later 
developmental events needs to be 
explored.

Time-lapse microscopy (TLM) image 
analysis
AI algorithms can be applied to ‘raw’ 
TLM images. In a recently described 
image analysis system (Tran et al., 2019), 
supervised AI training using previously 
labelled images was developed. The 
labels used included blastocyst and 
morphokinetic annotations with positive 
or negative implantation results. One 
of the drawbacks of the system was its 
reliance on humans to create the labels, 
introducing biased observations and 
scores. The other problematic practice 
was the use of non-viable, non-fertilized 
or discarded material for negative 
training groups to increase the training 
dataset. The rationale behind this was 
the establishment of a completely 
automatic system that would also be able 
to recognize these negative embryos. 
The question remains, Will the developed 
algorithms perform equally well after 
removing the discarded group? And are 
they superior to the blastocyst grading 
system (Kan-Tor et al., 2020b)?

In another recent study, a different 
approach was used to predict blastocyst 
development. It used TLM data up to 
Day 3 of embryo development. Two 
different AI algorithms were developed: 
an automatic morphokinetic data 
model (temporal) and a TLM embryo 
image model (spatial). Both models 
have comparable predictive power 
(∼0.7). When combined, the different 
weights were used to optimize blastocyst 
prediction. Interestingly, more weights 
were given to the morphokinetic 
data compared to the images. When 
compared to embryologists, the AI 
model performed better in terms of 
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sensitivity and specificity (Liao et al., 
2021). In another TLM study, blastocyst 
prediction was accomplished by using 
morphokinetic TLM data from the first 
3 days of development. Interestingly, 
by applying a self-improvement 
(reinforcement) strategy, the predictive 
power of the AI system improved 
(d'Estaing et al., 2021).

One unique approach to assessing 
blastocyst quality is to evaluate a 
quantitative standard expansion assay 
(qSEA) using AI. This measures the 
kinetics of blastocyst expansion and 
correlates to outcome, where faster-
expanding blastocysts exhibit higher 
implantation potential (Huang et al., 
2021).

The following novel embryo parameters 
have been proposed by Bori et al. (2020, 
2021), to be included in AI selection 
models: pronuclear kinetics, blastocyst 
measurements, the size of the ICM 
and the cell cycle length of the TE 
cells. To verify the general utilization of 
their proposed model (donor oocytes), 
the authors’ algorithm will need to be 
evaluated on the IVF patient population. 
The same group presented a novel 
model utilizing AI to predict embryo 
implantation. Using AI image analysis 
combined with the embryo proteomic 
profile of PGT euploid embryo spent 
culture media, the authors were able 
to demonstrate very high implantation 
prediction. Although the study is 
preliminary, it demonstrates the power 
of AI to combine different data points 
(proteins and morphology) (Bori et al., 
2020, 2021).

Static image analysis of blastocysts
The objective of a study by Khosravi 
et al. (2019) was to establish an AI 
deep learning model that can evaluate 
blastocyst quality. In this AI-based 
prediction model, the blastocyst 
expansion was an important parameter, 
followed by ICM and TE quality. The 
precise time point used for the AI 
evaluation (110 h) demonstrated the 
importance of embryo developmental 
kinetics for embryo prediction. In a 
2020 study, a single image from the 
TLM image pool at 113 h was used for 
analysis (Bormann et al., 2020a). A CNN 
system was used to classify blastocysts 
based on the presence of the cavity and 
the morphological quality of the ICM 
and TE. Similar to Khosravi et al. (2019), 
Bormann's group demonstrated that the 

accuracy of this system for classifying 
blastocysts versus non-blastocysts was 
very high (91%). By using the genetic 
algorithm, the authors established a 
blastocyst ranking system called the ‘BL 
score’. The evaluation of the AI blastocyst 
selection method, using implantation 
outcomes of the blastocysts selected by 
humans for transfer, showed over 50% 
positive outcomes. It will be necessary 
to perform a comparative prospective 
study to identify the (dis)agreement 
in blastocyst selection for transfer 
between AI models and embryologists. 
The emerging question is how different 
the blastocyst selection for embryo 
transfer is between embryologists using 
the Gardner blastocyst grading system 
(Gardner et al., 2000) and AI model 
selection.

Bormann and colleagues demonstrated 
that the high degree of variability seen 
among embryologists making decisions 
on vitrification and embryo biopsy based 
on standard morphological assessments 
can be dramatically improved using deep 
neural networks (Bormann et al., 2020b). 
Souter et al. (2019) further demonstrated 
that deep learning CNN can be used to 
accurately identify which Day 3 assisted-
hatched embryos met Day 5 criteria for 
TE biopsy and cryopreservation with 
93.7% sensitivity and 96.3% specificity. 
This validation study was the first of its 
kind to demonstrate that an embryo 
decision-making algorithm could be 
successfully applied to embryos that had 
been artificially breached to promote 
premature herniation of TE cells for 
blastocyst-stage biopsy (Souter et al., 
2019).

How many times will the AI choose a 
different blastocyst for embryo transfer 
than the embryologist within the cohort 
of available embryos? There is a lot of 
disagreement among embryologists 
grading blastocysts, but how many 
times is the best blastocyst chosen for 
embryo transfer? There are no standards 
in choosing an AI system for embryo 
evaluation. They depend on the type 
of data, the size of the dataset and the 
output queries (Fernandez et al., 2020). 
It will be helpful to compare multiple AI 
models on the same dataset.

Other AI models do not use a specific 
time point for image analysis. In the 
model by VerMilyea et al. (2020), the 
‘viability’ of the embryos was categorized 
based on the embryologist-given Gardner 

BL grade, where a ‘3BB’ blastocyst was a 
cut-off for viable and non-viable classes 
using fetal heart measurements. Using 
computer vision image processing and 
deep learning, the authors achieved an 
overall accuracy of over 60% and an 
average accuracy improvement of 24% 
over embryologist grading.

Numerous complex neural network 
architectures have been proposed for 
image recognition and performance of 
these architectures are highly dependent 
on the requested task. Thirumalaraju 
et al. (2021) compared the use of 
eight different architectures to classify 
blastocyst-stage embryo images captured 
on a variety of imaging platforms. This 
study showed that Xception performed 
best in learning categorical embryo 
data and was able to accurately classify 
blastocysts based on their morphological 
quality. Xception correctly classified 
>99.5% of the highest quality blastocysts, 
which is of critical importance, clinically, 
when identifying embryos suited for 
transfer (Thirumalaraju et al., 2021).

Automated annotation of blastocysts
One of the potentially confounding 
factors that can affect AI protocols is the 
fact that the morphokinetic annotations 
are done by humans and are subjective. 
It will be necessary to develop AI models 
that can recognize abnormal karyokinetic 
(nuclear) and cytokinetic abnormalities 
(direct divisions 1–3, cell fusion) for 
optimal automatic annotation.

Most machine learning methods for 
embryo assessment and selection have 
used ‘computer vision methods’ using 
visual data (TLM or microscopic images). 
CNN is a method of choice to process 
visual information. It can be used for 
automatic cell annotation (Malmsten 
et al., 2020), cell detection and 
tracking (Leahy et al., 2020), blastocyst-
stage identification and witnessing 
(Kanakasabapathy et al., 2020b), 
embryo grading and selection, and 
blastocyst and implantation prediction 
(Louis et al., 2021). Furthermore, 
Dimitriadis et al. (2021) used an AI 
implantation prediction model as 
a novel and unbiased morphology-
based evaluation tool to assess the 
competencies of embryologists selecting 
embryos, performing vitrification and 
warming and of embryologists and 
physicians performing embryos transfers. 
It is important to note that these studies 
were done on retrospective data under 
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experimental settings. The clinical 
application of AI still requires prospective 
studies.

Implantation prediction
In a recent study, Fitz et al. (2021) sought 
to determine whether embryologists 
could improve their ability to select 
euploid embryos with the highest 
implantation potential with the aid of 
an AI-trained implantation algorithm. In 
this two-part study, embryologists from 
five separate laboratories were asked to 
select the top embryo for transfer from 
an image set of two embryos (n = 200 
image sets). Next, they were provided 
with the same image set and a notation 
of which embryo was predicted to 
implant using AI. Embryologists were 
told that the AI implantation algorithm 
had a 75% accuracy, which could 
be incorporated into their embryo 
selection decision. All 14 embryologists 
participating in this study improved their 
ability to select the top-quality embryo 
when incorporating AI, with a mean 
improvement of 11.1% (range 1.4–15.5%) 
(Fitz et al., 2021). One limitation of this 
study is its retrospective nature.

In studies using AI to predict embryo 
implantation potential on static or 
TLM images, secondary factors such 
as laboratory conditions or other 
human factors have not been analysed 
or included in the models. Culture 
conditions and human expertise are 
important factors that influence embryo 
development and quality. To achieve a 
useful and objective prediction, these 
factors will need to be included in 
models. In addition, it is known that 
successful implantation and live birth 
depend on other factors not inherent 
to the embryo. Predicting implantation 
solely on embryo quality is an incomplete 
assessment. The focus of AI embryo 
prediction models should be the ranking 
of the embryos within the patient cohort 
rather than on implantation prediction. 
The variation in success rates among IVF 
centres and laboratories prevents the 
establishment of universal AI models for 
implantation prediction (Zaninovic and 
Rosenwaks, 2020).

How can AI-based models be used 
in the clinical laboratory setting and 
within laboratory workflows in a 
prospective way? First, AI models need 
to be evaluated in parallel with standard 
laboratory embryo selection practice. 
Second, prospective studies of embryo 

selection by machine and human need to 
be performed.

AI for non-invasive ploidy screening
PGT for aneuploidies (PGT-A) remains 
the most objective way to assess an 
embryo. However, its invasive nature, 
cost and the assumption of diagnostic 
accuracy limit a more widespread 
use. It is no surprise that non-invasive 
approaches to embryo selection, 
including time-lapse morphokinetic 
evaluation (Campbell et al., 2013), 
morphology assessment (Capalbo et al., 
2014; Zhan et al., 2020a) and AI systems 
(Pennetta et al., 2018; Meyer et al., 
2020) have aimed to compare PGT-A 
outcomes against their findings. However, 
it is still difficult to find studies presenting 
AI systems for embryo ranking that are 
trained against ploidy status as their 
ground truth.

The first published study of this kind 
was most likely by Chavez-Badiola et al. 
(2020a), in which the authors trained and 
tested an AI model called ERICA to rank 
embryos based on its ability to predict 
euploidy, using a single static blastocyst 
image as the only source of information. 
Following training and validation on 
1231 images from three IVF centres, 
the ERICA device showed significantly 
better prediction capabilities (70% 
overall accuracy for euploidy prediction) 
than chance and the embryologists 
involved in the study. It is important to 
acknowledge that despite seniority and 
experience, conclusions on the device's 
superiority cannot be drawn based on a 
comparison against the performance of 
only two embryologists. As the authors 
acknowledge, a larger testing set, as well 
as a larger number of embryologists 
with different levels of experience and 
seniority, would be required to confirm 
the study's results. At this point, however, 
the results are encouraging enough to 
suggest that ERICA has the potential 
to assist embryologists and clinicians 
during embryo selection in a non-invasive 
fashion (Chavez-Badiola et al., 2020a).

We can anticipate that other similar 
full-paper publications will follow shortly, 
presenting new approaches aimed at 
embryo selection based on ploidy. These 
studies will perhaps target time-lapse 
sequences (Barnes et al., 2020) and 
incorporate omics (Bori et al., 2021), 
patient and cycle characteristics (Jiang 
et al., 2021), non-invasive chromosome 
screening tests (Chavez-Badiola et al., 

2020c), as well as new AI approaches. 
Building high-quality datasets from 
diverse settings – while managing hype 
(VerMilyea et al., 2019) and expectations 
– are challenges that will remain.

CONCLUSION

AI has long been utilized in other 
industries and has recently found a 
place in medical imaging; however, it 
is just beginning to have an impact on 
the clinical practice of reproductive 
medicine, a field familiar to rapid 
advancements and open to using new 
technologies to achieve the ultimate goal 
of a healthy baby.

Because there are over 2 million IVF 
cycles performed annually throughout 
the world, and with IVF being a medical 
procedure globally registered, one can 
only hope that the data collection from 
throughout the years will help to develop 
AI systems that are widely applicable 
across clinics and independent of 
differences in protocols and populations. 
Barriers to achieving this include health 
record privacy terms, paper records and 
variations in electronic medical record 
systems.

AI systems developed thus far for the 
field of reproductive medicine have 
focused primarily on the use of embryo 
imaging and have been summarized 
here. However, AI has the potential to 
assist in other areas of reproductive 
medicine as well, including endometrial 
receptivity, uterine function, fertility 
impact of diseases such as endometriosis 
and adenomyosis, recurrent implantation 
failure, and recurrent pregnancy loss 
(Curchoe, 2021). In summary, AI has the 
potential to be used as a promising tool 
to resolve many longstanding challenges 
in the field of reproductive medicine, as 
well as to help clinicians make decisions 
and achieve the ultimate goal of a healthy 
live-born baby. However, at present, 
AI has not established its role in the 
world of reproductive medicine, and it 
is important to keep in mind that its use 
in improving outcomes is not, as of yet, 
proven in the literature. Further studies, 
ideally randomized controlled, are 
required, to identify indicated use of this 
very promising tool.
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