Advertisement

Human sperm morphology assessment since 2010: experience of an Australian external quality assurance programme

Published:November 11, 2021DOI:https://doi.org/10.1016/j.rbmo.2021.11.005

      Abstract

      Research question

      Which classification criteria of sperm normality were used after the publication of the World Health Organization (WHO) 5th Edition manual (WHO5), and how did the laboratories perform?

      Design

      Semen samples were sent to enrolled laboratories over a 10-year period for the determination of the proportion of spermatozoa with normal morphology. The coefficient of variation was used to indicate the level of precision between laboratories.

      Results

      Before the publication of WHO5, at least six different classification criteria were in use. After 2010, WHO5 was quickly adopted, with 50% of laboratories using WHO5 criteria after the first 2 years, increasing to 94% after 10 years. Reported normal forms by WHO3 and WHO4 users remained consistent; however, the morphology results for each distribution declined significantly over time for WHO5 users (P < 0.001), suggesting laboratories were becoming stricter in their identification of normal spermatozoa. The precision of WHO5 users improved over time as shown by a steady decline in the coefficients of variation.

      Conclusions

      The introduction of WHO5 resulted in the effective adoption of its morphology classification system, with laboratories showing improved between-laboratory variation over time; however, the identification of normal forms by WHO5 users over time was inconsistent, as laboratories became stricter. Given the reduction in reported normal forms by WHO5 users, it seems that increased training of laboratory personnel or the consideration of validated objective automated analysers in the assessment of sperm morphology would seem warranted.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Agarwal A.
        • Sharma R.K.
        Automation is the key to standardized semen analysis using the automated SQA-V sperm quality analyzer.
        Fertil. Steril. 2007; 87: 156-162
        • Alvarez C.
        • Castilla J.
        • Ramirez J.
        • Vergara F.
        • Yoldi A.
        • Fernandez A.
        • Gaforio J.
        External quality control program for semen analysis: Spanish experience.
        J. Assist. Reprod. Genet. 2005; 22: 379-387
        • Auger J.
        Assessing human sperm morphology: top models, underdogs or biometrics?.
        Asian J. Androl. 2010; 12: 36
        • Auger J.
        • Eustache F.
        Standardisation de la classification morphologique des spermatozoïdes humains selon la méthode de David modifiée.
        Andrologie. 2000; 10: 358-373
        • Auger J.
        • Jouannet P.
        • Eustache F.
        Another look at human sperm morphology.
        Hum. Reprod. 2016; 31: 10-23
        • Barratt C.
        • Björndahl L.
        • Menkveld R.
        • Mortimer D.
        ESHRE special interest group for andrology basic semen analysis course: a continued focus on accuracy, quality, efficiency and clinical relevance.
        Hum. Reprod. 2011; 26: 3207-3212
        • Belsey M.
        • Moghissi K.
        • Eliasson R.
        • Paulsen C.
        • Gallegos A.
        • Prasad M.
        WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction.
        1st Edition edn. Press Concern, Singapore1980
        • Björndahl L.
        The usefulness and significance of assessing rapidly progressive spermatozoa.
        Asian J. Androl. 2010; 12: 33
        • Coetzee K.
        • Kruger T.
        • Lombard C.
        Repeatability and variance analysis on multiple computer-assisted (IVOS*) sperm morphology readings.
        Andrologia. 1999; 31: 163-168
        • Cooper T.
        • Noonan E.
        • von Eckardstein S.
        • Auger J.
        • Baker H.
        • Behre H.
        • Haugen T.
        • Kruger T.
        • Wang C.
        • Mbizvo M.
        • et al.
        World Health Organization reference values for human semen characteristics.
        Hum. Reprod. Update. 2010; 16: 231-245
        • David G.
        • Bisson J.P.
        • Czyglik F.
        • Jouannet P.
        • Gernigon C.
        Anomalies morphologiques du spermatozoïde humain. 1. Prognitionen pour un système de classification.
        J. Gynéc. Obstet. Biol. Reprod. 1975; 4: 17-36
        • Eliasson R.
        Standards for investigation of human semen.
        Andrologia. 1971; 3: 49-64
        • Eliasson R.
        Semen analysis with regard to sperm number, sperm morphology and functional aspects.
        Asian J. Androl. 2010; 12: 26
        • Engel K.M.
        • Grunewald S.
        • Schiller J.
        • Paasch U.
        Automated semen analysis by SQA Vision® versus the manual approach—A prospective double-blind study.
        Andrologia. 2019; 51: e13149
        • Esteves S.C.
        • Zini A.
        • Aziz N.
        • Alvarez J.G.
        • Sabanegh Jr, E.S.
        • Agarwal A.
        Critical appraisal of World Health Organization's new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men.
        Urology. 2012; 79: 16-22
        • Filimberti E.
        • Degl'Innocenti S.
        • Borsotti M.
        • Quercioli M.
        • Piomboni P.
        • Natali I.
        • Fino M.
        • Caglieresi C.
        • Criscuoli L.
        • Gandini L.
        • et al.
        High variability in results of semen analysis in andrology laboratories in Tuscany (Italy): the experience of an external quality control (EQC) programme.
        Andrology. 2013; 1: 401-407
        • Franken D.
        • Avari K.
        • Palshetkar N.
        Morphology training is compulsory to ensure relevant clinical results.
        Andrologia. 2008; 40: 377-380
        • Franken D.
        • Dada O.
        The establishment of sperm morphology satellite training laboratories in Africa.
        Andrologia. 2005; 37: 57-60
        • Franken D.
        • Kruger T.
        Lessons learned from a sperm morphology quality control programme.
        Andrologia. 2006; 38: 225-229
        • Franken D.
        • Smith M.
        • Menkveld R.
        • Kruger T.
        • Sekadde-Kigondu C.
        • Mbizvo M.
        • Akande E.
        The development of a continuous quality control programme for strict sperm morphology among sub-Saharan African laboratories.
        Hum. Reprod. 2000; 15: 667-671
        • Franken D.R.
        African experience with sperm morphology training courses.
        Reprod. Biomed. Online. 2003; 7: 114-119
        • Franken D.R.
        • Aneck-Hahn N.
        • Lombaard C.
        • Kruger T.F.
        Semenology training programs: 8 years' experience.
        Fertil. Steril. 2010; 94: 2615-2619
        • Freund M.
        Standards for the rating of human sperm morphology. A cooperative study.
        Int. J. Fertil. 1966; 11: 97-180
        • Gatimel N.
        • Mansoux L.
        • Moreau J.
        • Parinaud J.
        • Léandri R.D.
        Continued existence of significant disparities in the technical practices of sperm morphology assessment and the clinical implications: results of a French questionnaire.
        Fertil. Steril. 2017; 107: 365-372
        • Gatimel N.
        • Moreau J.
        • Parinaud J.
        • Léandri R.
        Sperm morphology: assessment, pathophysiology, clinical relevance, and state of the art in 2017.
        Andrology. 2017; 5: 845-862
        • Ilhan H.O.
        • Serbes G.
        • Aydin N.
        Automated sperm morphology analysis approach using a directional masking technique.
        Comput. Biol. Med. 2020; 122103845
        • Lammers J.
        • Chtourou S.
        • Reignier A.
        • Loubersac S.
        • Barrière P.
        • Fréour T.
        Comparison of two automated sperm analyzers using 2 different detection methods versus manual semen assessment.
        J. Gynecol. Obstet. Hum. Reprod. 2021; 50102084
        • Lammers J.
        • Splingart C.
        • Barrière P.
        • Jean M.
        • Fréour T.
        Double-blind prospective study comparing two automated sperm analyzers versus manual semen assessment.
        J. Assist. Reprod. Genet. 2014; 31: 35-43
        • Lemmens L.
        • Kos S.
        • Beijer C.
        • Braat D.
        • Jonker M.
        • Nelen W.
        • Wetzels A.
        Optimization of laboratory procedures for intrauterine insemination: survey of methods in relation to clinical outcome.
        Andrology. 2018; 6: 707-713
        • Mallidis C.
        • Cooper T.G.
        • Hellenkemper B.
        • Lablans M.
        • Ückert F.
        • Nieschlag E.
        Ten years' experience with an external quality control program for semen analysis.
        Fertil. Steril. 2012; 98 (e614): 611-616
        • Matson P.
        External quality assessment for semen analysis and sperm antibody detection: results of a pilot scheme.
        Hum. Reprod. 1995; 10: 620-625
        • Menkveld R.
        • Stander F.S.
        • Kruger T.F.
        • van Zyl J.A.
        The evaluation of morphological characteristics of human spermatozoa according to stricter criteria.
        Hum. Reprod. 1990; 5: 586-592
        • Nieschlag E.
        • Pock T.
        • Hellenkemper B.
        External Quality Control of Semen Analysis Reveals Low Compliance with WHO Guidelines.
        J. für Reproduktionsmedizin und Endokrinologie. 2018; 14: 306-310
        • Ombelet W.
        • Bosmans E.
        • Janssen M.
        • Cox A.
        • Maes M.
        • Punjabi U.
        • Blaton V.
        • Gunst J.
        • Haidl G.
        • Wouters E.
        Multicenter study on reproducibility of sperm morphology assessments.
        Arch. Androl. 1998; 41: 103-114
        • Palacios E.
        • Clavero A.
        • Gonzalvo M.
        • Rosales A.
        • Mozas J.
        • Martínez L.
        • Ramírez J.
        • Björndahl L.
        • Morancho-Zaragoza J.
        • Fernández-Pardo E.
        • et al.
        Acceptable variability in external quality assessment programmes for basic semen analysis.
        Hum. Reprod. 2012; 27: 314-322
        • Prabaharan L.
        • Raghunathan A.
        An improved convolutional neural network for abnormality detection and segmentation from human sperm images.
        J. Ambient. Intell. Humaniz. Comput. 2021; : 1-12
        • Punjabi U.
        • Wyns C.
        • Mahmoud A.
        • Vernelen K.
        • China B.
        • Verheyen G.
        Fifteen years of Belgian experience with external quality assessment of semen analysis.
        Andrology. 2016; 4: 1084-1093
        • Riordon J.
        • McCallum C.
        • Sinton D.
        Deep learning for the classification of human sperm.
        Comput. Biol. Med. 2019; 111103342
        • Slama R.
        • Eustache F.
        • Ducot B.
        • Jensen T.K.
        • Jørgensen N.
        • Horte A.
        • Irvine S.
        • Suominen J.
        • Andersen A.
        • Auger J.
        Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities.
        Hum. Reprod. 2002; 17: 503-515
        • Wang Y.
        • Yang J.
        • Jia Y.
        • Xiong C.
        • Meng T.
        • Guan H.
        • Xia W.
        • Ding M.
        • Yuchi M.
        Variability in the morphologic assessment of human sperm: use of the strict criteria recommended by the World Health Organization in 2010.
        Fertil. Steril. 2014; 101: 945-949
        • WHO
        WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction.
        2nd Edition edn. Cambridge University Press, Cambridge1987
        • WHO
        WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction.
        3rd Edition edn. Cambridge University Press, Cambridge1992
        • WHO
        WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction.
        4th Edition edn. Cambridge University Press, Cambridge1999
        • WHO
        WHO laboratory manual for the examination and processing of human semen.
        5th Edition edn. World Health Organization, Geneva, Switzerland2010
        • WHO
        WHO laboratory manual for the examination and processing of human semen.
        sixth edition. World Health Organization, Geneva2021 (Licence: CC BY-NC-SA 3.0 IGO)
        • Yibre A.M.
        • Koçer B.
        Semen quality predictive model using Feed Forwarded Neural Network trained by Learning-Based Artificial Algae Algorithm.
        Eng. Sci. Technol. an Int. J. 2021; 24: 310-318
        • Zuvela E.
        • Matson P.
        Accuracy and precision of four types of chamber used to measure sperm concentration: results of 12 consecutive years’ experience from an external quality assurance programme.
        Reprod. BioMed. Online. 2020; 41: 671-678

      Biography

      Dr Matson was the founding Chair of the Association of Clinical Embryologists. He has been associated with EQA programmes in both the UK and Australia, is a Fellow of the Royal College of Pathologists and has been awarded life membership of the Fertility Society of Australia and New Zealand.
      Key message
      The 5th World Health Organization (WHO) manual (WHO5) was adopted by 50% of laboratories within the first 2 years, increasing to 94% after 10 years. Despite improved precision, the normal forms per sample showed sustained reduction (r = –0.7806, P < 0.00001), and increased efforts are required to train staff or develop reliable automated analysers.