Abstract
Research question
Study design
Results
Conclusions
Keywords
Introduction
- Leijdekkers J.
- Eijkemans M.
- Van Tilborg T.
- Oudshoorn S.
- McLernon D.
- Bhattacharya S.
- Mol B.
- Broekmans F.
- Torrance H.
- OPTIMIST Group
- Leijdekkers J.
- Eijkemans M.
- Van Tilborg T.
- Oudshoorn S.
- McLernon D.
- Bhattacharya S.
- Mol B.
- Broekmans F.
- Torrance H.
- OPTIMIST Group
Materials and methods
Data acquisition and study population
Statistical analysis
- Leijdekkers J.
- Eijkemans M.
- Van Tilborg T.
- Oudshoorn S.
- McLernon D.
- Bhattacharya S.
- Mol B.
- Broekmans F.
- Torrance H.
- OPTIMIST Group
Model development
Missing data
Validations
Ethics and data availability statement
Results
Study population
Créteil | Tenon | P-value | |
---|---|---|---|
Treatment | |||
Total number of couples | 1819 | 1226 | |
Total number of cycles | 5719 | 2699 | |
Number of cycles per couple | 3.14 (2.31) | 2.20 (1.49) | <0.001 |
IUI only | 467 (25.67) | 95 (7.75) | <0.001 |
IVF after IUI failure | 305 (16.77) | 51 (4.16) | <0.001 |
IVF with embryo transfer only | 1047 (57.56) | 1080 (88.09) | <0.001 |
Quantitative features | |||
Woman's age | 32.37 ± 4.52 | 33.87 ± 4.42 | <0.001 |
Man's age | 35.39 ± 6.18 | 38.45 ± 6.62 | <0.001 |
Woman's BMI | 24.85 ± 4.96 | 24.56 ± 4.51 | 0.098 |
Woman's infertility duration | 2.98 ± 2.36 | 5.04 ± 3.22 | <0.001 |
Woman's number of previous live births | 0.57 ± 1.00 | 0.77 ± 1.17 | <0.001 |
Infertility causes features | |||
Idiopathic | 582 (32.00) | 122 (9.95) | <0.001 |
Male | 713 (39.20) | 553 (45.11) | <0.001 |
Endometriosis | 147 (8.08) | 187 (15.25) | <0.001 |
Ovarian failure | 67 (3.68) | 248 (20.23) | <0.001 |
Ovulatory | 335 (18.42) | 211 (17.21) | 0.422 |
Tubal | 320 (17.59) | 298 (24.31) | <0.001 |
Other | 86 (4.73) | 129 (10.52) | <0.001 |
Final live birth rate | |||
Deliveries | 930 (51.13) | 499 (40.70) | <0.001 |
Deliveries by IUI | 252 (13.85) | 47 (3.83) | <0.001 |
Deliveries by FIV | 678 (37.27) | 452 (36.87) | 0.851 |

Internal validations
Model | C-index | Calibration level | Calibration level after recalibration |
---|---|---|---|
Internal validation for Créteil | |||
Cox regression | 59.4% | 0.78 | 1.04 |
XGBoost-based model | 59.1% | 0.74 | 1.03 |
Internal validation for Tenon | |||
Cox regression | 60.3% | 0.72 | 0.99 |
XGBoost-based model | 60.1% | 0.72 | 1.03 |
External validation on Tenon with a model trained on Créteil's data | |||
Cox regression | 57.8% | 0.72 | |
Cox recalibrated on Créteil data | 57.8% | 0.7 | |
XGBoost-based model | 59.7% | 1.1 | |
XGBoost-based model recalibrated on Créteil data | 59.7% | 0.5 |
External validation



Discussion
- Leijdekkers J.
- Eijkemans M.
- Van Tilborg T.
- Oudshoorn S.
- McLernon D.
- Bhattacharya S.
- Mol B.
- Broekmans F.
- Torrance H.
- OPTIMIST Group
- Leijdekkers J.
- Eijkemans M.
- Van Tilborg T.
- Oudshoorn S.
- McLernon D.
- Bhattacharya S.
- Mol B.
- Broekmans F.
- Torrance H.
- OPTIMIST Group
- Leijdekkers J.
- Eijkemans M.
- Van Tilborg T.
- Oudshoorn S.
- McLernon D.
- Bhattacharya S.
- Mol B.
- Broekmans F.
- Torrance H.
- OPTIMIST Group
Acknowledgements
References
- Interpretable Machine Learning in Healthcare.in: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. 2018: 559-560
- XGBoost: A Scalable Tree Boosting System.in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 785-794
- Evaluating prediction models in reproductive medicine.Human Reproduction. 2009; 24: 1774-1778
- Predicting the chance of live birth for women undergoing IVF: a novel pretreatment counselling tool.Human Reproduction. 2016; 31: 84-92
- Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis.Springer, Heidelberg2015
- Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors.Statistics in Medicine. 1996; 15: 361-387
- A study of cross-validation and bootstrap for accuracy estimation and model selection.in: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada2. 1995: 1137-1145 (20–25 August 1995)
- Predicting the cumulative chance of live birth over multiple complete cycles of in vitro fertilization: an external validation study.Human Reproduction. 2018; 33: 1684-1695
- Effects of subfertility cause, smoking and body weight on the success rate of IVF.Human Reproduction. 2005; 20: 1867-1875
Lundberg, S.M., Erion, G.G., and Lee, S.-I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888.
- Cumulative live-birth rates after in vitro fertilization.New England Journal of Medicine. 2009; 360: 236-243
- Cumulative live birth rates after one or more complete cycles of IVF: a population-based study of linked cycle data from 178 898 women.Human Reproduction. 2016; 31: 572-581
- Predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation: population based study of linked cycle data from 113 873 women.BMJ. 2016; 355: i5735
- Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival.Scientific Reports. 2021; 11: 1-13
- Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles.PLoS Medicine. 2011; 8e1000386
- Review and evaluation of performance measures for survival prediction models in external validation settings.BMC Medical Research Methodology. 2017; 17: 60
Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. arXiv preprint arXiv:1811.12808.
- A systematic review of the quality of clinical prediction models in in vitro fertilisation.Human Reproduction. 2020; 35: 100-116
- Artificial intelligence in the fertility clinic: status, pitfalls and possibilities.Human Reproduction. 2021; 36: 2429-2442
Rodrıguez, G. (2005). Non-parametric estimation in survival models. cited on, page 20.
- La fertilité des couples en france.Bulletin Epidémiologique Hebdomadaire. 2012; : 87-91
- Computing the hazard ratios associated with explanatory variables using machine learning models of survival data.JCO Clinical Cancer Informatics. 2021; 5: 364-378
- Evaluation of prognostic models: discrimination and calibration performance.in: Proceedings of the Third International Conference on Computational Intelligence in Medicine and Healthcare. 2007
- Female ageing and reproductive outcome in assisted reproduction cycles.Singapore Medical Journal. 2014; 55: 305
- A predictive model for women's assisted fecundity before starting the first IVF/ICSI treatment cycle.Journal of Assisted Reproduction and Genetics. 2020; 37: 171-180
- Factors that affect outcome of in-vitro fertilisation treatment.Lancet. 1996; 348: 1402-1406
- On the c-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data.Statistics in Medicine. 2011; 30: 1105-1117
- Calibration of risk prediction models: impact on decision-analytic performance.Medical Decision Making. 2015; 35: 162-169
- Do clinical prediction models improve concordance of treatment decisions in reproductive medicine?.BJOG: An International Journal of Obstetrics and Gynaecology. 2006; 113: 825-831
- Which factors play a role in clinical decision-making in subfertility?.Reproductive Biomedicine Online. 2006; 12: 473-480
- Individualized decision-making in IVF: calculating the chances of pregnancy.Human Reproduction. 2013; 28: 2972-2980
- Templeton prediction model underestimates IVF success in an external validation.Reproductive Biomedicine Online. 2011; 22: 597-602
- How concordant are the estimated rates of natural conception and in-vitro fertilization/embryo transfer success?.Human Reproduction. 1999; 14: 689-693
Biography
