Advertisement

Comparison of embryo implantation potential between time-lapse incubators and standard incubators: a randomized controlled study

      Highlights

      • Time-lapse systems significantly improved the first embryo transfer implantation rate.
      • Time-lapse systems did not significantly improve the cumulative implantation rate.
      • Time-lapse systems did not significantly improve the live birth rate.

      Abstract

      Research question

      What are the potential clinical benefits of embryo culture and assessment in a time-lapse incubator compared with a standard incubator using static assessment?

      Design

      This large multicentre, single-blinded, randomized controlled study included 1224 participants randomly assigned (1:1) to the time-lapse or standard incubator group. In all patients one or two embryos were transferred on day 3. The primary outcome was the implantation rate in the first embryo transfer cycle. Secondary outcomes included the cumulative implantation rate, live birth rate in the first embryo transfer cycle and cumulative live birth rate.

      Results

      Among 1224 participants recruited, 1182 underwent embryo transfer. The number of successfully implanted embryos in the first transfer cycle was significantly higher in the time-lapse incubator group (time-lapse group: 52.35%, standard incubator group: 47.11%, P = 0.014). The implantation rate in the first embryo transfer cycle was still significantly higher in the time-lapse group than the standard incubator group after adjusting for age, body mass index, medical centre and embryo status (relative risk 1.11, 95% confidence interval 1.02–1.20, P = 0.020). However, the cumulative implantation rate, live birth rate in the first embryo transfer cycle and cumulative live birth rate were not statistically different between the groups.

      Conclusions

      The implantation rate in the first embryo transfer cycle was significantly improved in the time-lapse group, but the effect of the time-lapse system on the cumulative implantation rate or cumulative live birth rate was not significant. The embryo assessment method offered by time-lapse systems rather than an undisturbed environment may play an important role in improving the implantation rate in the first embryo transfer cycle. These results are only applicable to young patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alhelou Y.
        • Mat Adenan N.A.
        • Ali J.
        Embryo culture conditions are significantly improved during uninterrupted incubation: A randomized controlled trial.
        Reprod. Biol. 2018; 18: 40-45https://doi.org/10.1016/j.repbio.2017.12.003
        • Aparicio-Ruiz B.
        • Romany L.
        • Meseguer M.
        Selection of preimplantation embryos using time-lapse microscopy in in vitro fertilization: State of the technology and future directions.
        Birth Defects Res. 2018; 110: 648-653https://doi.org/10.1002/bdr2.1226
        • Apter S.
        • Ebner T.
        • Freour T.
        • Guns Y.
        • Kovacic B.
        • Le Clef N.
        • Marques M.
        • Meseguer M.
        • Montjean D.
        • Sfontouris I.
        • Sturmey R.
        • Coticchio G.
        Good practice recommendations for the use of time-lapse technology(†).
        Hum. Reprod. Open. 2020; 2020: hoaa008https://doi.org/10.1093/hropen/hoaa008
        • Armstrong S.
        • Bhide P.
        • Jordan V.
        • Pacey A.
        • Marjoribanks J.
        • Farquhar C.
        Time-lapse systems for embryo incubation and assessment in assisted reproduction.
        Cochrane Database Syst. Rev. 2019; 5Cd011320https://doi.org/10.1002/14651858.CD011320.pub4
        • Athayde Wirka K.
        • Chen A.A.
        • Conaghan J.
        • Ivani K.
        • Gvakharia M.
        • Behr B.
        • Suraj V.
        • Tan L.
        • Shen S.
        Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development.
        Fertil. Steril. 2014; 101 (e1631-1635): 1637-1648https://doi.org/10.1016/j.fertnstert.2014.02.050
        • Barberet J.
        • Chammas J.
        • Bruno C.
        • Valot E.
        • Vuillemin C.
        • Jonval L.
        • Choux C.
        • Sagot P.
        • Soudry A.
        • Fauque P.
        Randomized controlled trial comparing embryo culture in two incubator systems: G185 K-System versus EmbryoScope.
        Fertil. Steril. 2018; 109 (e301): 302-309https://doi.org/10.1016/j.fertnstert.2017.10.008
        • Barrie A.
        • Homburg R.
        • McDowell G.
        • Brown J.
        • Kingsland C.
        • Troup S.
        Embryos cultured in a time-lapse system result in superior treatment outcomes: a strict matched pair analysis.
        Hum. Fertil. (Camb.). 2017; 20: 179-185
        • Barrie A.
        • Homburg R.
        • McDowell G.
        • Brown J.
        • Kingsland C.
        • Troup S.
        Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging.
        Reprod. Biomed. Online. 2017; 34: 455-462https://doi.org/10.1016/j.rbmo.2017.02.011
        • Boucret L.
        • Tramon L.
        • Saulnier P.
        • Ferré-L'Hôtellier V.
        • Bouet P.E.
        • May-Panloup P.
        Change in the Strategy of Embryo Selection with Time-Lapse System Implementation-Impact on Clinical Pregnancy Rates.
        J. Clin. Med. 2021; 10https://doi.org/10.3390/jcm10184111
        • Bromer J.G.
        • Seli E.
        Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics.
        Curr. Opin. Obstet. Gynecol. 2008; 20: 234-241https://doi.org/10.1097/GCO.0b013e3282fe723d
        • Chen M.
        • Wu Y.
        • Huang X.
        • Li W.
        • Sun C.
        • Meng Z.
        • Ai A.
        • Hong L.
        • Tang C.
        • Li K.
        • Fu Y.
        • Chen Z.
        • Kong P.
        • Guo Y.
        • Liu W.
        • Mol B.W.
        • Teng X.
        Embryo incubation by time-lapse systems versus conventional incubators in Chinese women with diminished ovarian reserve undergoing IVF/ICSI: a study protocol for a randomised controlled trial.
        BMJ Open. 2020; 10e038657https://doi.org/10.1136/bmjopen-2020-038657
        • Chera-Aree P.
        • Thanaboonyawat I.
        • Thokha B.
        • Laokirkkiat P.
        Comparison of pregnancy outcomes using a time-lapse monitoring system for embryo incubation versus a conventional incubator in in vitro fertilization: An age-stratification analysis.
        Clin. Exp. Reprod. Med. 2021; 48: 174-183https://doi.org/10.5653/cerm.2020.04091
        • Embryology, A.S.i.R.M.a.E.S.I.G.o.
        The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting.
        Hum. Reprod. 2011; 26: 1270-1283https://doi.org/10.1093/humrep/der037
        • Gallego R.D.
        • Remohí J.
        • Meseguer M.
        Time-lapse imaging: the state of the art†.
        Biol. Reprod. 2019; 101: 1146-1154https://doi.org/10.1093/biolre/ioz035
        • Goodman L.R.
        • Goldberg J.
        • Falcone T.
        • Austin C.
        • Desai N.
        Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates A randomized controlled trial.
        Fertil. Steril. 2016; 105 (e210): 275-285https://doi.org/10.1016/j.fertnstert.2015.10.013
        • Griesinger G.
        Is progress in clinical reproductive medicine happening fast enough?.
        Ups J. Med. Sci. 2020; 125: 65-67https://doi.org/10.1080/03009734.2020.1734991
        • Kalleas D.
        • McEvoy K.
        • Horne G.
        • Roberts S.A.
        • Brison D.R.
        Live birth rate following undisturbed embryo culture at low oxygen in a time-lapse incubator compared to a high-quality benchtop incubator.
        Hum. Fertil. (Camb.). 2020; : 1-7https://doi.org/10.1080/14647273.2020.1729423
        • Kirkegaard K.
        • Hindkjaer J.J.
        • Grøndahl M.L.
        • Kesmodel U.S.
        • Ingerslev H.J.
        A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse in cubator.
        J. Assist. Reprod. Genet. 2012; 29: 565-572
        • Kovacs P.
        • Matyas S.
        • Forgacs V.
        • Sajgo A.
        • Molnar L.
        • Pribenszky C.
        Non-invasive embryo evaluation and selection using time-lapse monitoring: Results of a randomized controlled study.
        Eur. J. Obstet. Gynecol. Reprod. Biol. 2019; 233: 58-63https://doi.org/10.1016/j.ejogrb.2018.12.011
        • Lagalla C.
        • Tarozzi N.
        • Sciajno R.
        • Wells D.
        • Di Santo M.
        • Nadalini M.
        • Distratis V.
        • Borini A.
        Embryos with morphokinetic abnormalities may develop into euploid blastocysts.
        Reprod. Biomed. Online. 2017; 34: 137-146https://doi.org/10.1016/j.rbmo.2016.11.008
        • Li M.
        • Wang Y.
        • Shi J.
        Do day-3 embryo grade predict day-5 blastocyst transfer outcomes in patients with good prognosis?.
        Gynecol. Endocrinol. 2019; 35: 36-39https://doi.org/10.1080/09513590.2018.1484444
        • Liu Y.
        • Chapple V.
        • Roberts P.
        • Matson P.
        Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system.
        Fertil. Steril. 2014; 102 (e1292): 1295-1300https://doi.org/10.1016/j.fertnstert.2014.07.1235
        • Liu Y.
        • Qi F.
        • Matson P.
        • Morbeck D.E.
        • Mol B.W.
        • Zhao S.
        • Afnan M.
        Between-laboratory reproducibility of time-lapse embryo selection using qualitative and quantitative parameters: a systematic review and meta-analysis.
        J. Assist. Reprod. Genet. 2020; 37: 1295-1302https://doi.org/10.1007/s10815-020-01789-4
        • Magdi Y.
        • Samy A.
        • Abbas A.M.
        • Ibrahim M.A.
        • Edris Y.
        • El-Gohary A.
        • Fathi A.M.
        • Fawzy M.
        Effect of embryo selection based morphokinetics on IVF/ICSI outcomes: evidence from a systematic review and meta-analysis of randomized controlled trials.
        Arch. Gynecol. Obstet. 2019; 300: 1479-1490https://doi.org/10.1007/s00404-019-05335-1
        • Mandawala A.A.
        • Harvey S.C.
        • Roy T.K.
        • Fowler K.E.
        Time-lapse embryo imaging and morphokinetic profiling: Towards a general characterisation of embryogenesis.
        Anim. Reprod. Sci. 2016; 174: 2-10https://doi.org/10.1016/j.anireprosci.2016.09.015
        • Meseguer M.
        • Rubio I.
        • Cruz M.
        • Basile N.
        • Marcos J.
        • Requena A.
        Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study.
        Fertil. Steril. 2012; 98 (e1410): 1481-1489https://doi.org/10.1016/j.fertnstert.2012.08.016
        • Milki A.A.
        • Hinckley M.D.
        • Gebhardt J.
        • Dasig D.
        • Westphal L.M.
        • Behr B.
        Accuracy of day 3 criteria for selecting the best embryos.
        Fertil. Steril. 2002; 77: 1191-1195https://doi.org/10.1016/s0015-0282(02)03104-7
        • Montag M.
        • Liebenthron J.
        • Köster M.
        Which morphological scoring system is relevant in human embryo development?.
        Placenta. 2011; 32 Suppl 3: S252-S256https://doi.org/10.1016/j.placenta.2011.07.009
        • Motato Y.
        • de los Santos M.J.
        • Escriba M.J.
        • Ruiz B.A.
        • Remohí J.
        • Meseguer M.
        Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system.
        Fertil. Steril. 2016; 105 (e379): 376-384https://doi.org/10.1016/j.fertnstert.2015.11.001
        • Park H.
        • Bergh C.
        • Selleskog U.
        • Thurin-Kjellberg A.
        • Lundin K.
        No benefit of culturing embryos in a closed system compared with a conventional incubator in terms of number of good quality embryos: results from an RCT.
        Hum. Reprod. 2015; 30: 268-275https://doi.org/10.1093/humrep/deu316
        • Reignier A.
        • Lefebvre T.
        • Loubersac S.
        • Lammers J.
        • Barriere P.
        • Freour T.
        Time-lapse technology improves total cumulative live birth rate and shortens time to live birth as compared to conventional incubation system in couples undergoing ICSI.
        J. Assist. Reprod. Genet. 2021; 38: 917-923https://doi.org/10.1007/s10815-021-02099-z
        • Rubio I.
        • Kuhlmann R.
        • Agerholm I.
        • Kirk J.
        • Herrero J.
        • Escribá M.J.
        • Bellver J.
        • Meseguer M.
        Limited implantation success of direct-cleaved human zygotes: a time-lapse study.
        Fertil. Steril. 2012; 98: 1458-1463https://doi.org/10.1016/j.fertnstert.2012.07.1135
        • Sciorio R.
        • Thong J.K.
        • Pickering S.J.
        Comparison of the development of human embryos cultured in either an EmbryoScope or benchtop incubator.
        J. Assist. Reprod. Genet. 2018; 35: 515-522https://doi.org/10.1007/s10815-017-1100-6
        • Siristatidis C.
        • Komitopoulou M.A.
        • Makris A.
        • Sialakouma A.
        • Botzaki M.
        • Mastorakos G.
        • Salamalekis G.
        • Bettocchi S.
        • Palmer G.A.
        Morphokinetic parameters of early embryo development via time lapse monitoring and their effect on embryo selection and ICSI outcomes: a prospective cohort study.
        J. Assist. Reprod. Genet. 2015; 32: 563-570https://doi.org/10.1007/s10815-015-0436-z
        • Swain J.E.
        Decisions for the IVF laboratory: comparative analysis of embryo culture incubators.
        Reprod. Biomed. Online. 2014; 28: 535-547https://doi.org/10.1016/j.rbmo.2014.01.004
        • Swain J.E.
        Controversies in ART: considerations and risks for uninterrupted embryo culture.
        Reprod. Biomed. Online. 2019; 39: 19-26https://doi.org/10.1016/j.rbmo.2019.02.009
        • Ueno S.
        • Ito M.
        • Shimazaki K.
        • Okimura T.
        • Uchiyama K.
        • Yabuuchi A.
        • Kato K.
        Comparison of Embryo and Clinical Outcomes in Different Types of Incubator Between Two Different Embryo Culture Systems.
        Reprod. Sci. 2021; 28: 2301-2309https://doi.org/10.1007/s43032-021-00504-7
        • Wu L.
        • Han W.
        • Wang J.
        • Zhang X.
        • Liu W.
        • Xiong S.
        • Han S.
        • Liu J.
        • Gao Y.
        • Huang G.
        Embryo culture using a time-lapse monitoring system improves live birth rates compared with a convent ional culture system: a prospective cohort study.
        Hum. Fertil. (Camb.). 2018; 21: 255-262
        • Wu L.
        • Han W.
        • Wang J.
        • Zhang X.
        • Liu W.
        • Xiong S.
        • Han S.
        • Liu J.
        • Gao Y.
        • Huang G.
        Embryo culture using a time-lapse monitoring system improves live birth rates compared with a conventional culture system: a prospective cohort study.
        Hum. Fertil. (Camb.). 2018; 21: 255-262https://doi.org/10.1080/14647273.2017.1335886
        • Zaninovic N.
        • Irani M.
        • Meseguer M.
        Assessment of embryo morphology and developmental dynamics by time-lapse microscopy: is there a relation to implantation and ploidy?.
        Fertil. Steril. 2017; 108: 722-729https://doi.org/10.1016/j.fertnstert.2017.10.002
        • Zegers-Hochschild F.
        • Adamson G.D.
        • de Mouzon J.
        • Ishihara O.
        • Mansour R.
        • Nygren K.
        • Sullivan E.
        • Vanderpoel S.
        International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009.
        Fertil. Steril. 2009; 92: 1520-1524https://doi.org/10.1016/j.fertnstert.2009.09.009
        • Zhan Q.
        • Ye Z.
        • Clarke R.
        • Rosenwaks Z.
        • Zaninovic N.
        Direct Unequal Cleavages: Embryo Developmental Competence, Genetic Constitution and Clinical Outcome.
        PLoS One. 2016; 11e0166398https://doi.org/10.1371/journal.pone.0166398
        • Zhang J.Q.
        • Li X.L.
        • Peng Y.
        • Guo X.
        • Heng B.C.
        • Tong G.Q.
        Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate.
        Reprod. Biomed. Online. 2010; 20: 510-515https://doi.org/10.1016/j.rbmo.2009.12.027

      Biography

      Xiaodong Zhang graduated from Southwest Medical University, Sichuan, China. He has been engaged in reproductive medicine for more than 10 years at Chongqing Health Center for Women and Children, mainly responsible for embryonic development-related research. His current research areas are embryo assessment, artificial intelligence and reproductive biology.
      Key message
      The study found that embryo incubation, evaluation and selection using a time-lapse system compared with standard culture led to significantly higher implantation rates in the first embryo transfer cycle in good-prognosis patients, while the cumulative implantation and live birth rates remained unchanged.