Advertisement

The impact of fragile X premutation carrier status on embryo morphokinetic development

      Abstract

      Research question

      Does inheritance of the fragile X mental retardation 1 (FMR1) premutation allele affect embryo morphokinetic development?

      Design

      A retrospective cohort analysis of 529 embryos from 126 IVF cycles of 39 FMR1 premutation female carriers undergoing preimplantation genetic testing for monogenic/single gene defects (PGT-M). Morphological and morphokinetic parameters obtained using a time-lapse monitoring system were compared between embryos that inherited the FMR1 premutation allele (FMR1 group, n = 271) and those who received the normal allele (normal group, n = 258). The following embryo outcome measures were compared: morphokinetic parameters up to day 3, start of blastulation time (tSB) for day 5 embryos and the rate of top-quality embryos on days 3 and 5.

      Results

      No differences were found in morphokinetic parameters between the groups from the time of intracytoplasmic sperm injection (ICSI) until a biopsy on day 3. The blastulation rate in the two groups was comparable. However, the start of blastulation was delayed in FMR1 embryos compared to that in the genetically normal embryos (median tSB: 104.2 h [99.3−110.3] versus 101.6 h [94.5−106.7], P = 0.01). In addition, the rate of top-quality FMR1 embryos was lower than that of genetically normal embryos (25.6% versus 38.8%, P = 0.04).

      Conclusion

      Embryos that inherit the FMR1 premutation allele are of lower quality at the blastocyst stage compared with those that do not inherit the mutated allele.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Allen E.G.
        • Charen K.
        • Hipp H.S.
        • Shubeck L.
        • Amin A.
        • He W.
        • Nolin S.L.
        • Glicksman A.
        • Tortora N.
        • McKinnon B.
        • Shelly K.E.
        • Sherman S.L.
        Refining the risk for fragile X-associated primary ovarian insufficiency (FXPOI) by FMR1 CGG repeat size.
        Genet. Med. 2021; 23: 1648-1655https://doi.org/10.1038/s41436-021-01177-y
        • Allingham-Hawkins D.J.
        • Babul-Hirji R.
        • Chitayat D.
        • Holden J.J.A.
        • Yang K.T.
        • Lee C.
        • Hudson R.
        • Gorwill H.
        • Nolin S.L.
        • Glicksman A.
        • Jenkins E.C.
        • Brown W.T.
        • Howard-Peebles P.N.
        • Becchi C.
        • Cummings E.
        • Fallon L.
        • Seitz S.
        • Black S.H.
        • Vianna-Morgante A.M.
        • Costa S.S.
        • Otto P.A.
        • Mingroni-Netto R.C.
        • Murray A.
        • Webb J.
        • MacSwinney F.
        • Dennis N.
        • Jacobs P.A.
        • Syrrou M.
        • Georgiou I.
        • Patsalis P.C.
        • Giovannucci Uzielli M.L.
        • Guarducci S.
        • Lapi E.
        • Cecconi A.
        • Ricci U.
        • Ricotti G.
        • Biondi C.
        • Scarselli B.
        • Vieri F.
        Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study – preliminary data.
        Am. J. Med. Genet. 1999; 83: 322-325https://doi.org/10.1002/(sici)1096-8628(19990402)83:4<322::aid-ajmg17>3.3.co;2-b
        • Amir H.
        • Barbash-Hazan S.
        • Kalma Y.
        • Frumkin T.
        • Malcov M.
        • Samara N.
        • Hasson J.
        • Reches A.
        • Azem F.
        • Ben-Yosef D.
        Time-lapse imaging reveals delayed development of embryos carrying unbalanced chromosomal translocations.
        J. Assist. Reprod. Genet. 2019; 36: 315-324https://doi.org/10.1007/s10815-018-1361-8
        • Avraham S.
        • Almog B.
        • Reches A.
        • Zakar L.
        • Malcov M.
        • Sokolov A.
        • Alpern S.
        • Azem F.
        The ovarian response in fragile X patients and premutation carriers undergoing IVF-PGD: reappraisal.
        Hum. Reprod. 2017; 32: 1508-1511https://doi.org/10.1093/humrep/dex090
        • Basile N.
        • Vime P.
        • Florensa M.
        • Aparicio Ruiz B.
        • García Velasco J.A.
        • Remohí J.
        • Meseguer M.
        The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection.
        Hum. Reprod. 2015; 30: 276-283https://doi.org/10.1093/humrep/deu331
        • Bibi G.
        • Malcov M.
        • Yuval Y.
        • Reches A.
        • Ben-Yosef D.
        • Almog B.
        • Amit A.
        • Azem F.
        The effect of CGG repeat number on ovarian response among fragile X premutation carriers undergoing preimplantation genetic diagnosis.
        Fertil. Steril. 2010; 94: 869-874https://doi.org/10.1016/j.fertnstert.2009.04.047
        • Campbell A.
        • Fishel S.
        • Bowman N.
        • Duffy S.
        • Sedler M.
        • Hickman C.F.L.
        Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics.
        Reprod. Biomed. Online. 2013; 26: 477-485https://doi.org/10.1016/j.rbmo.2013.02.006
        • Dioguardi C.C.
        • Uslu B.
        • Haynes M.
        • Kurus M.
        • Gul M.
        • Miao D.Q.
        • De Santis L.
        • Ferrari M.
        • Bellone S.
        • Santin A.
        • Giulivi C.
        • Hoffman G.
        • Usdin K.
        • Johnson J.
        Granulosa cell and oocyte mitochondrial abnormalities in a mouse model of fragile X primary ovarian insufficiency.
        Mol. Hum. Reprod. 2016; 22: 384-396https://doi.org/10.1093/molehr/gaw023
        • Elizur S.E.
        • Lebovitz O.
        • Derech-Haim S.
        • Dratviman-Storobinsky O.
        • Feldman B.
        • Dor J.
        • Orvieto R.
        • Cohen Y.
        Elevated levels of FMR1 mRNA in granulosa cells are associated with low ovarian reserve in FMR1 premutation carriers.
        PLoS One. 2014; 9: 1-7https://doi.org/10.1371/journal.pone.0105121
        • Ennis S.
        • Ward D.
        • Murray A.
        Nonlinear association between CGG repeat number and age of menopause in FMR1 premutation carriers.
        Eur. J. Hum. Genet. 2006; 14: 253-255https://doi.org/10.1038/sj.ejhg.5201510
        • Gardner D.K.
        • Schoolcraft W.B.
        In-vitro culture of human blastocysts.
        in: Jansen R. Mortimer D. Towards Reproductive Certainty: Infertility and Genetics Beyond. Parthenon Press, Carnforth1999: 378-388
        • Gazy I.
        • Miller C.J.
        • Kim G.Y.
        • Usdin K.
        CGG Repeat Expansion, and Elevated Fmr1 Transcription and Mitochondrial Copy Number in a New Fragile X PM Mouse Embryonic Stem Cell Model.
        Front Cell Dev. Biol. 2020; 30: 482https://doi.org/10.3389/fcell.2020.00482
        • Hutchinson A.P.
        • Pereira N.
        • Lilienthal D.P.
        • Coveney S.
        • Lekovich J.P.
        • Elias R.T.
        • Rosenwaks Z.
        Impact of FMR1 pre-mutation status on blastocyst development in patients undergoing pre-implantation genetic diagnosis.
        Gynecol. Obstet. Invest. 2018; 83: 23-28https://doi.org/10.1159/000455849
        • Kenneson A.
        • Zhang F.
        • Hagedorn C.H.
        • Warren S.T.
        Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers.
        Hum. Mol. Genet. 2001; 10: 1449-1454https://doi.org/10.1093/hmg/10.14.1449
        • Mailick M.R.
        • Hong J.
        • Greenberg J.
        • Smith L.
        • Sherman S.
        Curvilinear association of CGG repeats and age at menopause in women with FMR1 premutation expansions.
        Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2014; 165: 705-711https://doi.org/10.1002/ajmg.b.32277
        • Malcov M.
        • Naiman T.
        • Yosef D.Ben
        • Carmon A.
        • Mey-Raz N.
        • Amit A.
        • Vagman I.
        • Yaron Y.
        Preimplantation genetic diagnosis for fragile X syndrome using multiplex nested PCR.
        Reprod. Biomed. Online. 2007; 14: 515-521https://doi.org/10.1016/S1472-6483(10)60901-7
        • Meseguer M.
        • Herrero J.
        • Tejera A.
        • Hilligsøe K.M.
        • Ramsing N.B.
        • Remoh J.
        The use of morphokinetics as a predictor of embryo implantation.
        Hum. Reprod. 2011; 26: 2658-2671https://doi.org/10.1093/humrep/der256
        • Minasi M.G.
        • Colasante A.
        • Riccio T.
        • Ruberti A.
        • Casciani V.
        • Scarselli F.
        • Spinella F.
        • Fiorentino F.
        • Varricchio M.T.
        • Greco E.
        Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study.
        Hum. Reprod. 2016; 31: 2245-2254https://doi.org/10.1093/humrep/dew183
        • Nolin S.L.
        • Brown W.T.
        • Glicksman A.
        • Houck G.E.
        • Gargano A.D.
        • Sullivan A.
        • Biancalana V.
        • Bröndum-Nielsen K.
        • Hjalgrim H.
        • Holinski-Feder E.
        • Kooy F.
        • Longshore J.
        • Macpherson J.
        • Mandel J.L.
        • Matthijs G.
        • Rousseau F.
        • Steinbach P.
        • Väisänen M.L.
        • Von Koskull H.
        • Sherman S.L.
        Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles.
        Am. J. Hum. Genet. 2003; 72: 454-464https://doi.org/10.1086/367713
        • Nolin S.L.
        • Lewis F.A.
        • Ye L.L.
        • Houck G.E.
        • Glicksman A.E.
        • Limprasert P.
        • Li S.Y.
        • Zhong N.
        • Ashley A.E.
        • Feingold E.
        • Sherman S.L.
        • Brown W.T.
        Familial transmission of the FMR1 CGG repeat.
        Am. J. Hum. Genet. 1996; 59: 1252-1261https://doi.org/10.1136/jmg.34.4.349-b
        • Patel D.V.
        • Shah P.V.
        • Kotdawala A.P.
        • Herrero J.
        • Rubio I.
        • Banker M.R.
        Morphokinetic behavior of euploid and aneuploid embryos analyzed by time-lapse in embryoscope.
        J. Hum. Reprod. Sci. 2016; 9: 112-118https://doi.org/10.4103/0974-1208.183511
        • Racowsky C.
        • Stern J.E.
        • Gibbons W.E.
        • Behr B.
        • Pomeroy K.O.
        • Biggers J.D.
        National collection of embryo morphology data into Society for Assisted Reproductive Technology Clinic Outcomes Reporting System: associations among day 3 cell number, fragmentation and blastomere asymmetry, and live birth rate.
        Fertil. Steril. 2011; 95: 1985-1989https://doi.org/10.1016/j.fertnstert.2011.02.009
        • Racowsky C.
        • Vernon M.
        • Mayer J.
        • Ball G.D.
        • Behr B.
        • Pomeroy K.O.
        • Wininger D.
        • Gibbons W.
        • Conaghan J.
        • Stern J.E.
        Standardization of grading embryo morphology.
        Fertil. Steril. 2010; 94: 1152-1153https://doi.org/10.1016/j.fertnstert.2010.05.042
        • Schwartz C.E.
        • Dean J.
        • Howard-Peebles P.N.
        • Bugge M.
        • Mikkelsen M.
        • Tommerup N.
        • Hull C.
        • Hagerman R.
        • Holden J.J.A.
        • Stevenson R.E.
        Obstetrical and gynecological complications in fragile X carriers: a multicenter study.
        Am. J. Med. Genet. 1994; 51: 400-402https://doi.org/10.1002/ajmg.1320510419
        • Sonigo C.
        • Mayeur A.
        • Sadoun M.
        • Pinto M.
        • Benguigui J.
        • Frydman N.
        • Monnot S.
        • Benachi A.
        • Steffann J.
        • Grynberg M.
        What is the threshold of mature oocytes to obtain at least one healthy transferable cleavage-stage embryo after preimplantation genetic testing for fragile X syndrome?.
        Hum. Reprod. 2021; 36: 3003-3013https://doi.org/10.1093/humrep/deab214
        • Sullivan A.K.
        • Marcus M.
        • Epstein M.P.
        • Allen E.G.
        • Anido A.E.
        • Paquin J.J.
        • Yadav-Shah M.
        • Sherman S.L.
        Association of FMR1 repeat size with ovarian dysfunction.
        Hum. Reprod. 2005; 20: 402-412https://doi.org/10.1093/humrep/deh635
        • Sutcliffe J.S.
        • Nelson D.L.
        • Zhang F.
        • Pieretti M.
        • Caskey C.T.
        • Saxe D.
        • Warren S.T.
        DNA methylation represses FMR-1 transcription in fragile X syndrome.
        Hum. Mol. Genet. 1992; 1: 397-400https://doi.org/10.1093/hmg/1.6.397
        • Tsafrir A.
        • Altarescu G.
        • Margalioth E.
        • Brooks B.
        • Renbaum P.
        • Levy-Lahad E.
        • Rabinowitz R.
        • Varshaver I.
        • Eldar-Geva T.
        PGD for fragile X syndrome: ovarian function is the main determinant of success.
        Hum. Reprod. 2010; 25: 2629-2636https://doi.org/10.1093/humrep/deq203
        • van Montfoort A.
        • Carvalho F.
        • Coonen E.
        • Kokkali G.
        • Moutou C.
        • Rubio C.
        • Goossens V.
        • De Rycke M.
        ESHRE PGT Consortium data collection XIX–XX: PGT analyses from 2016 to 2017.
        Hum. Reprod. Open. 2021; 2021: 1-10https://doi.org/10.1093/hropen/hoab024
        • Verkerk A.J.M.H.
        • Pieretti M.
        • Sutcliffe J.S.
        • Fu Y.H.
        • Kuhl D.P.A.
        • Pizzuti A.
        • Reiner O.
        • Richards S.
        • Victoria M.F.
        • Zhang F.
        • Eussen B.E.
        • van Ommen G.J.B.
        • Blonden L.A.J.
        • Riggins G.J.
        • Chastain J.L.
        • Kunst C.B.
        • Galjaard H.
        • Thomas Caskey C.
        • Nelson D.L.
        • Oostra B.A.
        • Warran S.T.
        Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome.
        Cell. 1991; 65: 905-914https://doi.org/10.1016/0092-8674(91)90397-H
        • Welt C.K.
        • Smith P.C.
        • Taylor A.E.
        Evidence of early ovarian aging in fragile X premutation carriers.
        J. Clin. Endocrinol. Metab. 2004; 89: 4569-4574https://doi.org/10.1210/jc.2004-0347
        • Yrigollen C.M.
        • Martorell L.
        • Durbin-Johnson B.
        • Naudo M.
        • Genoves J.
        • Murgia A.
        • Polli R.
        • Zhou L.
        • Barbouth D.
        • Rupchock A.
        • Finucane B.
        • Latham G.J.
        • Hadd A.
        • Berry-Kravis E.
        • Tassone F.
        AGG interruptions and maternal age affect FMR1 CGG repeat allele stability during transmission.
        J. Neurodev. Disord. 2014; 6https://doi.org/10.1186/1866-1955-6-24

      Biography

      Dr Yael Shulman received her MD from the Technion - Israel Institute of Technology. She completed her residency in Obstetrics and Gynecology at Tel-Aviv Souraski Medical Center where she now works as an Attending Physician. Her main interests are in the field of reproductive medicine and gynaecological surgery.
      Key message
      Embryos that inherit the FMR1 premutation allele are of lower morphokinetic quality at the blastocyst stage compared to those that do not inherit the mutated allele. These findings suggest negative impact of FMR1 premutation on embryo development.