Advertisement
ARTICLE| Volume 46, ISSUE 3, P446-459, March 2023

The effect of platelet lysate on mouse ovarian structure, function and epigenetic modifications after autotransplantation

Published:December 02, 2022DOI:https://doi.org/10.1016/j.rbmo.2022.11.018

      Abstract

      Research question

      What are the effects of platelet lysate on structure, function and epigenetic modifications of heterotopically transplanted mouse ovarian tissues?

      Design

      Mice were divided into three groups (n = 17 per group): control (mice with no ovariectomy, grafting or treatment), autograft and autograft plus platelet lysate (3 ml/kg at the graft sites). Inflammatory markers, serum malondialdehyde (MDA) concentration and total antioxidant capacity were assessed on day 7 after transplantation. Twenty-eight days after transplantation, stereological and hormonal analyses were conducted. Chromatin immunoprecipitation and quantitative real-time polymerase chain reaction were also used to quantify the epigenetic modifications of maturation genes, parallel to their expression.

      Results

      The total volume of the ovary, cortex and medulla, and the number of different types of follicles, the concentration of interleukin (IL)-10, progesterone and oestradiol and total antioxidant capacity significantly decreased in the autograft group compared with the control group (P < 0.001); these parameters significantly increased in the autograft plus platelet lysate group compared with the autograft group (P < 0.001). The concentrations of tumour necrosis factor alpha, IL-6 and MDA increased significantly in the autograft group compared with the control group (P < 0.001); in the autograft plus platelet lysate group, these parameters significantly decreased compared with the autograft group (P < 0.001). In the autograft plus platelet lysate group, the expression levels of Gdf-9 (P < 0.0021), Igf-1 (P < 0.0048) and Igf-2 (P < 0.0063) genes also increased along with a lower incorporation of MeCP2 in the promoter regions (P < 0.001) compared with the autograft group.

      Conclusions

      Platelet lysate can contribute to follicular survival by improving folliculogenesis and increasing the expression of oocyte maturation genes.

      KEYWORDS

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Reproductive BioMedicine Online
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahmadi S.
        • Mehranjani M.S.
        Taurine improves follicular survival and function of mice ovarian grafts through increasing CD31 and GDF9 expression and reducing oxidative stress and apoptosis.
        European Journal of Pharmacology. 2021; 903174134https://doi.org/10.1016/j.ejphar.2021.174134
        • Baird D.T.
        • Webb R.
        • Campbell B.K.
        • Harkness L.M.
        • Gosden R.G.
        Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at -196 C.
        Endocrinology. 1999; 140: 462-471https://doi.org/10.1210/endo.140.1.6453
        • Barsotti M.C.
        • Losi P.
        • Briganti E.
        • Sanguinetti E.
        • Magera A.
        • Al Kayal T.
        • Feriani R.
        • Di Stefano R.
        • Soldani G.
        Effect of platelet lysate on human cells involved in different phases of wound healing.
        PLoS ONE. 2013; 8: 1-11https://doi.org/10.1371/journal.pone.0084753
        • Benzie I.F.F.
        • Strain J.J.
        The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay.
        Analytical Biochemistry. 1996; 239: 70-76
        • Bindal P.
        • Gnanasegaran N.
        • Bindal U.
        • Haque N.
        • Ramasamy T.S.
        • Chai W.L.
        • Kasim N.H.A.
        Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment.
        Clinical Oral Investigations. 2019; 23: 3821-3831https://doi.org/10.1007/s00784-019-02811-5
        • Boer K.
        • de Wit L.E.A.
        • Peters F.S.
        • Hesselink D.A.
        • Hofland L.J.
        • Betjes M.G.H.
        • Looman C.W.N.
        • Baan C.C.
        Variations in DNA methylation of interferon gamma and programmed death 1 in allograft rejection after kidney transplantation.
        Clinical Epigenetics. 2016; 8: 1-11https://doi.org/10.1186/s13148-016-0288-0
        • Bontha S.V.
        • Maluf D.G.
        • Archer K.J.
        • Dumur C.I.
        • Dozmorov M.G.
        • King A.L.
        • Akalin E.
        • Mueller T.F.
        • Gallon L.
        • Mas V.R.
        Effects of DNA Methylation on Progression to Interstitial Fibrosis and Tubular Atrophy in Renal Allograft Biopsies: A Multi-Omics Approach.
        American Journal of Transplantation. 2017; 17: 3060-3075https://doi.org/10.1111/ajt.14372
        • Buege J.A.
        • Aust S.D.
        Biomembranes - Part C: Biological Oxidations.
        Methods in Enzymology. 1978; 52: 302-310
        • Burnouf T.
        • Strunk D.
        • Koh M.B.C.
        • Schallmoser K.
        Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?.
        Biomaterials. 2016; 76: 371-387https://doi.org/10.1016/j.biomaterials.2015.10.065
        • Cacciottola L.
        • Courtoy G.E.
        • Nguyen T.Y.T.
        • Hossay C.
        • Donnez J.
        • Dolmans M.M.
        Adipose tissue–derived stem cells protect the primordial follicle pool from both direct follicle death and abnormal activation after ovarian tissue transplantation.
        Journal of Assisted Reproduction and Genetics. 2021; 38: 151-161https://doi.org/10.1007/s10815-020-02005-z
        • Cacciottola L.
        • Manavella D.D.
        • Amorim C.A.
        • Donnez J.
        • Dolmans M.M.
        In vivo characterization of metabolic activity and oxidative stress in grafted human ovarian tissue using microdialysis.
        Fertility and Sterility. 2018; 110: 534-544.e3https://doi.org/10.1016/j.fertnstert.2018.04.009
        • Cacciottola L.
        • Nguyen T.Y.T.
        • Chiti M.C.
        • Camboni A.
        • Amorim C.A.
        • Donnez J.
        • Dolmans M.M.
        Long-term advantages of ovarian reserve maintenance and follicle development using adipose tissue-derived stem cells in ovarian tissue transplantation.
        Journal of Clinical Medicine. 2020; 9: 1-18https://doi.org/10.3390/jcm9092980
        • Chou M.L.
        • Wu J.W.
        • Gouel F.
        • Jonneaux A.
        • Tillerman K.
        • Renn T.Y.
        • Laloux C.
        • Chang H.M.
        • Lin L.T.
        • Devedjian J.C.
        • Devos D.
        • Burnouf T.
        Tailor-made purified human platelet lysate concentrated in neurotrophins for treatment of Parkinson's disease.
        Biomaterials. 2017; 142: 77-89https://doi.org/10.1016/j.biomaterials.2017.07.018
        • Commin L.
        • Buff S.
        • Rosset E.
        • Galet C.
        • Allard A.
        • Bruyere P.
        • Joly T.
        • Gúrin P.
        • Neto V.
        Follicle development in cryopreserved bitch ovarian tissue grafted to immunodeficient mouse.
        Reproduction, Fertility and Development. 2012; 24: 461-471https://doi.org/10.1071/RD11166
        • Damous L.L.
        • Silva S.M.
        • Carbonel A.P.F.
        • Simões R.S.
        • Simões M.J.
        • Montero E.F.S.
        Effect of Remote Ischemic Preconditioning on Rat Estradiol Serum Levels and Follicular Development After Ovarian Transplantation.
        Transplantation Proceedings. 2009; 41: 830-833https://doi.org/10.1016/j.transproceed.2009.01.070
        • Delila L.
        • Wu Y.W.
        • Nebie O.
        • Widyaningrum R.
        • Chou M.L.
        • Devos D.
        • Burnouf T.
        Extensive characterization of the composition and functional activities of five preparations of human platelet lysates for dedicated clinical uses.
        Platelets. 2021; 32: 259-272https://doi.org/10.1080/09537104.2020.1849603
        • Demeestere I.
        • Simon P.
        • Emiliani S.
        • Delbaere A.
        • Englert Y.
        Orthotopic and heterotopic ovarian tissue transplantation.
        Human Reproduction Update. 2009; 15: 649-665https://doi.org/10.1093/humupd/dmp021
        • Dolmans M.M.
        • Falcone T.
        • Patrizio P.
        Importance of patient selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue.
        Fertility and Sterility. 2020; 114: 279-280https://doi.org/10.1016/j.fertnstert.2020.04.050
        • Dolmans M.M.
        • Manavella D.D.
        Recent advances in fertility preservation.
        Journal of Obstetrics and Gynaecology Research. 2019; 45: 266-279https://doi.org/10.1111/jog.13818
        • Eimani H.
        • Siadat S.F.
        • Eftekhari-Yazdi P.
        • Parivar K.
        • Valojerdi M.R.
        • Shahverdi A.
        Comparative study between intact and non-intact intramuscular auto-grafted mouse ovaries.
        Reproductive BioMedicine Online. 2009; 18: 53-60https://doi.org/10.1016/S1472-6483(10)60424-5
        • Eini F.
        • Bidadkosh A.
        • Nazarian H.
        • Piryaei A.
        • Ghaffari Novin M.
        • Joharchi K.
        Thymoquinone reduces intracytoplasmic oxidative stress and improves epigenetic modification in polycystic ovary syndrome mice oocytes, during in-vitro maturation.
        Molecular Reproduction and Development. 2019; 86: 1053-1066https://doi.org/10.1002/mrd.23222
        • Eini F.
        • Novin M.G.
        • Joharchi K.
        • Hosseini A.
        • Nazarian H.
        • Piryaei A.
        • Bidadkosh A.
        Intracytoplasmic oxidative stress reverses epigenetic modifications in polycystic ovary syndrome.
        Reproduction, Fertility and Development. 2017; 29: 2313-2323https://doi.org/10.1071/RD16428
        • Gouel F.
        • Do Van B.
        • Chou M.L.
        • Jonneaux A.
        • Moreau C.
        • Bordet R.
        • Burnouf T.
        • Devedjian J.C.
        • Devos D
        The protective effect of human platelet lysate in models of neurodegenerative disease: involvement of the Akt and MEK pathways.
        Journal of Tissue Engineering and Regenerative Medicine. 2017; 11: 3236-3240https://doi.org/10.1002/term.2222
        • Gouel F.
        • Timmerman K.
        • Gosset P.
        • Raoul C.
        • Dutheil M.
        • Jonneaux A.
        • Garçon G.
        • Moreau C.
        • Danel-Brunaud V.
        • Duce J.
        • Burnouf T.
        • Devedjian J.C.
        • Devos D.
        Whole and fractionated human platelet lysate biomaterials-based biotherapy induces strong neuroprotection in experimental models of amyotrophic lateral sclerosis.
        Biomaterials. 2022; 280https://doi.org/10.1016/j.biomaterials.2021.121311
        • Guo C.
        • Pei L.
        • Xiao X.
        • Wei Q.
        • Chen J.K.
        • Ding H.F.
        • Huang S.
        • Fan G.
        • Shi H.
        • Dong Z.
        DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8.
        Kidney International. 2017; 92: 1194-1205https://doi.org/10.1016/j.kint.2017.03.038
        • Halliwell B.
        Lipid peroxidation : and significanc & 3 its mechanism.
        2018 (February)
        • Hasegawa A.
        • Kumamoto K.
        • Mochida N.
        • Komori S.
        • Koyama K.
        Gene expression profile during ovarian folliculogenesis.
        Journal of Reproductive Immunology. 2009; 83: 40-44https://doi.org/10.1016/j.jri.2009.09.002
        • Hayon Y.
        • Dashevsky O.
        • Shai E.
        • Varon D.
        • Leker R.R.
        Platelet lysates stimulate angiogenesis, neurogenesis and neuroprotection after stroke.
        Thrombosis and Haemostasis. 2013; 110: 323-330https://doi.org/10.1160/TH12-11-0875
        • Hemadi M.
        • Abolhassani F.
        • Akbari M.
        • Sobhani A.
        • Pasbakhsh P.
        • Ährlund-Richter L.
        • Modaresi M.H.
        • Salehnia M.
        Melatonin promotes the cumulus-oocyte complexes quality of vitrified-thawed murine ovaries; with increased mean number of follicles survival and ovary size following heterotopic transplantation.
        European Journal of Pharmacology. 2009; 618: 84-90https://doi.org/10.1016/j.ejphar.2009.07.018
        • Heylen L.
        • Thienpont B.
        • Busschaert P.
        • Sprangers B.
        • Kuypers D.
        • Moisse M.
        • Lerut E.
        • Lambrechts D.
        • Naesens M.
        Age-related changes in DNA methylation affect renal histology and post-transplant fibrosis.
        Kidney International. 2019; 96: 1195-1204https://doi.org/10.1016/j.kint.2019.06.018
        • Heylen L.
        • Thienpont B.
        • Naesens M.
        • Busschaert P.
        • Depreeuw J.
        • Smeets D.
        • Jochmans I.
        • Monbaliu D.
        • Pirenne J.
        • Lerut E.
        • Ghesquiere B.
        • Kuypers D.
        • Lambrechts D.
        • Sprangers B.
        Ischemia-induced DNA hypermethylation during kidney transplant predicts chronic allograft injury.
        Journal of the American Society of Nephrology. 2018; 29: 1566-1576https://doi.org/10.1681/ASN.2017091027
        • Hoekman E.J.
        • Louwe L.A.
        • Rooijers M.
        • van der Westerlaken L.A.J.
        • Klijn N.F.
        • Pilgram G.S.K.
        • de Kroon C.D.
        • Hilders C.G.J.M.
        Ovarian tissue cryopreservation: Low usage rates and high live-birth rate after transplantation.
        Acta Obstetricia et Gynecologica Scandinavica. 2020; 99: 213-221https://doi.org/10.1111/aogs.13735
        • Honda H.M.
        • Korge P.
        • Weiss J.N.
        Mitochondria and Ischemia /Reperfusion Injury. 258. 2005: 248-258https://doi.org/10.1196/annals.1341.022
        • Huang N.
        • Tan L.
        • Xue Z.
        • Cang J.
        • Wang H.
        Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion.
        Biochemical and Biophysical Research Communications. 2012; 422: 697-702https://doi.org/10.1016/j.bbrc.2012.05.061
        • Jahangiri M.
        • Shahhoseini M.
        • Movaghar B.
        The effect of vitrification on expression and histone marks of Igf2 and Oct4 in blastocysts cultured from two-cell mouse embryos.
        Cell Journal. 2018; 19: 607-613https://doi.org/10.22074/cellj.2018.3959
        • Kalay Z.
        • Cevher S.C.
        Oxidant and antioxidant events during epidermal growth factor therapy to cutaneous wound healing in rats.
        International Wound Journal. 2012; 9: 362-371https://doi.org/10.1111/j.1742-481X.2011.00895.x
        • Kaltalioglu K.
        • Coskun-Cevher S.
        • Tugcu-Demiroz F.
        • Celebi N.
        PDGF supplementation alters oxidative events in wound healing process: A time course study.
        Archives of Dermatological Research. 2013; 305: 415-422https://doi.org/10.1007/s00403-013-1326-9
        • Kietzmann T.
        • Petry A.
        • Shvetsova A.
        • Gerhold J.M.
        • Görlach A.
        The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system.
        British Journal of Pharmacology. 2017; 174: 1533-1554https://doi.org/10.1111/bph.13792
        • Kim J.I.
        • Jung K.J.
        • Jang H.S.
        • Park K.M.
        Gender-specific role of HDAC11 in kidney ischemia- and reperfusion-induced PAI-1 expression and injury.
        American Journal of Physiology - Renal Physiology. 2013; : 305https://doi.org/10.1152/ajprenal.00015.2013
        • Leiter O.
        • Walker T.L.
        Platelets in Neurodegenerative Conditions—Friend or Foe?.
        Frontiers in Immunology. 2020; 11: 1-14https://doi.org/10.3389/fimmu.2020.00747
        • Lim S.O.
        • Gu J.M.
        • Kim M.S.
        • Kim H.S.
        • Park Y.N.
        • Park C.K.
        • Cho J.W.
        • Park Y.M.
        • Jung G.
        Epigenetic Changes Induced by Reactive Oxygen Species in Hepatocellular Carcinoma: Methylation of the E-cadherin Promoter.
        Gastroenterology. 2008; 135: 2128-2140.e8https://doi.org/10.1053/j.gastro.2008.07.027
        • Liu J.
        • Van Der Elst J.
        • Van Den Broecke R.
        • Dhont M.
        Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries.
        Human Reproduction. 2002; 17: 605-611https://doi.org/10.1093/humrep/17.3.605
        • Mahmoodi M.
        • Mehranjani M.S.
        • Shariatzadeh S.M.A.
        • Eimani H.
        • Shahverdi A.
        Effects of erythropoietin on ischemia, follicular survival, and ovarian function in ovarian grafts.
        Reproduction. 2014; 147: 733-741https://doi.org/10.1530/REP-13-0379
        • Mahmoodi M.
        • Soleimani Mehranjani M.
        • Shariatzadeh S.M.A.
        • Eimani H.
        • Shahverdi A.
        N-acetylcysteine improves function and follicular survival in mice ovarian grafts through inhibition of oxidative stress.
        Reproductive BioMedicine Online. 2015; 30: 101-110https://doi.org/10.1016/j.rbmo.2014.09.013
        • Manavella D.D.
        • Cacciottola L.
        • Desmet C.M.
        • Jordan B.F.
        • Donnez J.
        • Amorim C.A.
        • Dolmans M.M.
        Adipose tissue-derived stem cells in a fibrin implant enhance neovascularization in a peritoneal grafting site: A potential way to improve ovarian tissue transplantation.
        Human Reproduction. 2018; 33: 270-279https://doi.org/10.1093/humrep/dex374
        • Marumo T.
        • Hishikawa K.
        • Yoshikawa M.
        • Fujita T.
        Epigenetic regulation of BMP7 in the regenerative response to ischemia.
        Journal of the American Society of Nephrology. 2008; 19: 1311-1320https://doi.org/10.1681/ASN.2007091040
        • Mehta T.K.
        • Hoque M.O.
        • Ugarte R.
        • Rahman M.H.
        • Kraus E.
        • Montgomery R.
        • Melancon K.
        • Sidransky D.
        • Rabb H.
        Quantitative Detection of Promoter Hypermethylation as a Biomarker of Acute Kidney Injury During Transplantation.
        Transplantation Proceedings. 2006; 38: 3420-3426https://doi.org/10.1016/j.transproceed.2006.10.149
        • Mori M.
        • Rossi S.
        • Bonferoni M.C.
        • Ferrari F.
        • Sandri G.
        • Riva F.
        • Del Fante C.
        • Perotti C.
        • Caramella C.
        Calcium alginate particles for the combined delivery of platelet lysate and vancomycin hydrochloride in chronic skin ulcers.
        International Journal of Pharmaceutics. 2014; 461: 505-513https://doi.org/10.1016/j.ijpharm.2013.12.020
        • Myers M.
        • Britt K.L.
        • Wreford N.G.M.
        • Ebling F.J.P.
        • Kerr J.B.
        Methods for quantifying follicular numbers within the mouse ovary.
        Reproduction. 2004; 127: 569-580https://doi.org/10.1530/rep.1.00095
        • Nan X.
        • Campoy F.J.
        • Bird A.
        MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.
        Cell. 1997; 88: 471-481https://doi.org/10.1016/S0092-8674(00)81887-5
        • Nebie O.
        • Barro L.
        • Wu Y.W.
        • Knutson F.
        • Buée L.
        • Devos D.
        • Peng C.W.
        • Blum D.
        • Burnouf T.
        Heat-treated human platelet pellet lysate modulates microglia activation, favors wound healing and promotes neuronal differentiation in vitro.
        Platelets. 2021; 32: 226-237https://doi.org/10.1080/09537104.2020.1732324
        • Nebie O.
        • Carvalho K.
        • Barro L.
        • Delila L.
        • Faivre E.
        • Renn T.Y.
        • Chou M.L.
        • Wu Y.W.
        • Nyam-Erdene A.
        • Chou S.Y.
        • Buée L.
        • Hu C.J.
        • Peng C.W.
        • Devos D.
        • Blum D.
        • Burnouf T.
        Human platelet lysate biotherapy for traumatic brain injury: Preclinical assessment.
        Brain. 2021; 144: 3142-3158https://doi.org/10.1093/brain/awab205
        • Nebie O.
        • Devos D.
        • Vingtdeux V.
        • Barro L.
        • Devedjian J.C.
        • Jonneaux A.
        • Chou M.L.
        • Bordet R.
        • Buée L.
        • Knutson F.
        • Blum D.
        • Burnouf T.
        The neuroprotective activity of heat-treated human platelet lysate biomaterials manufactured from outdated pathogen-reduced (amotosalen/UVA) platelet concentrates.
        Journal of Biomedical Science. 2019; 26: 89https://doi.org/10.1186/s12929-019-0579-9
        • Noori Hassanvand M.
        • Soleimani Mehranjani M.
        • Shojafar E.
        Melatonin improves the structure and function of autografted mice ovaries through reducing inflammation: A stereological and biochemical analysis.
        International Immunopharmacology. 2019; 74105679https://doi.org/10.1016/j.intimp.2019.105679
        • Nurden A.T.
        Platelets, inflammation and repair.
        Frontiers in Bioscience. 2018; 23: 726-751
        • O'Hagan H.M.
        • Wang W.
        • Sen S.
        • DeStefano Shields C.
        • Lee S.S.
        • Zhang Y.W.
        • Clements E.G.
        • Cai Y.
        • Van Neste L.
        • Easwaran H.
        • Casero R.A.
        • Sears C.L.
        • Baylin S.B
        Oxidative Damage Targets Complexes Containing DNA Methyltransferases, SIRT1, and Polycomb Members to Promoter CpG Islands.
        Cancer Cell. 2011; 20: 606-619https://doi.org/10.1016/j.ccr.2011.09.012
        • Oktay K.H.
        • Marin L.
        • Petrikovsky B.
        • Terrani M.
        • Babayev S.N.
        Delaying Reproductive Aging by Ovarian Tissue Cryopreservation and Transplantation: Is it Prime Time?.
        Trends in Molecular Medicine. 2021; : 1-9https://doi.org/10.1016/j.molmed.2021.01.005
        • Olesen H.Ø.
        • Pors S.E.
        • Jensen L.B.
        • Grønning A.P.
        • Lemser C.E.
        • Nguyen Heimbürger M.T.H.
        • Mamsen L.S.
        • Getreu N.
        • Christensen S.T.
        • Andersen C.Y.
        • Kristensen S.G.
        N-acetylcysteine protects ovarian follicles from ischemia-reperfusion injury in xenotransplanted human ovarian tissue.
        Human Reproduction. 2021; 36: 429-443https://doi.org/10.1093/humrep/deaa291
        • Parker M.D.
        • Chambers P.A.
        • Lodge J.P.A.
        • Pratt J.R.
        Ischemia- reperfusion injury and its influence on the epigenetic modification of the donor kidney genome.
        Transplantation. 2008; 86: 1818-1823https://doi.org/10.1097/TP.0b013e31818fe8f9
        • Piotrowska H.
        • Kempisty B.
        • Sosinska P.
        • Ciesiolka S.
        • Bukowska D.
        • Antosik P.
        • Rybska M.
        • Brussow K.P.
        • Nowicki M.
        • Zabel M.
        The role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: A review.
        Veterinarni Medicina. 2013; 58: 505-515https://doi.org/10.17221/7082-VETMED
        • Pratt J.R.
        • Parker M.D.
        • Affleck L.J.
        • Corps C.
        • Hostert L.
        • Michalak E.
        • Lodge J.P.A.
        Ischemic Epigenetics and the Transplanted Kidney.
        Transplantation Proceedings. 2006; 38: 3344-3346https://doi.org/10.1016/j.transproceed.2006.10.112
        • Rajabzadeh A.R.
        • Eimani H.
        • Koochesfahani H.M.
        • Shahvardi A.H.
        • Fathi R.
        Morphological study of isolated ovarian preantral follicles using fibrin gel plus platelet lysate after subcutaneous transplantation.
        Cell Journal. 2015; 17: 145-152
        • Ross S.A.
        • Poirier L.
        Proceedings of the Trans-HHS Workshop: Diet, DNA methylation processes and health.
        Journal of Nutrition. 2002; 132: 2382-2387https://doi.org/10.1093/jn/132.8.2329s
        • Saber M.
        • Eimani H.
        • Soleimani Mehranjani M.
        • Shahverdi A.
        • Momeni H.R.
        • Fathi R.
        • Tavana S.
        The effect of Verapamil on ischaemia/reperfusion injury in mouse ovarian tissue transplantation.
        Biomedicine and Pharmacotherapy. 2018; 108: 1313-1319https://doi.org/10.1016/j.biopha.2018.09.130
        • Samberg M.
        • Stone R.
        • Natesan S.
        • Kowalczewski A.
        • Becerra S.
        • Wrice N.
        • Cap A.
        • Christy R.
        Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells.
        Acta Biomaterialia. 2019; 87: 76-87https://doi.org/10.1016/j.actbio.2019.01.039
        • Sanamiri K.
        • Soleimani Mehranjani M.
        • Shahhoseini M.
        • Shariatzadeh M.A.
        l-Carnitine improves follicular survival and function in ovarian grafts in the mouse.
        Reproduction, Fertility and Development. 2022; https://doi.org/10.1071/rd21287
        • Shirzad N.
        • Bordbar S.
        • Goodarzi A.
        • Mohammad M.
        • Khosravani P.
        • Sayahpour F.
        • Eslaminejad M.B.
        • Ebrahimi M.
        Umbilical cord blood platelet lysate as serum substitute in expansion of human mesenchymal stem cells.
        Cell Journal. 2017; 19: 403-414https://doi.org/10.22074/cellj.2017.4886
        • Shojafar E.
        • Soleimani Mehranjani M.
        • Shariatzadeh S.M.A.
        Adipose-derived mesenchymal stromal cell transplantation at the graft site improves the structure and function of autografted mice ovaries: a stereological and biochemical analysis.
        Cytotherapy. 2018; 20: 1324-1336https://doi.org/10.1016/j.jcyt.2018.09.006
        • Silva J.R.V.
        • Figueiredo J.R.
        • van den Hurk R
        Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis.
        Theriogenology. 2009; 71: 1193-1208https://doi.org/10.1016/j.theriogenology.2008.12.015
        • Soleimani R.
        • Heytens E.
        • Oktay K.
        Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants.
        PLoS ONE. 2011; 6https://doi.org/10.1371/journal.pone.0019475
        • Takae S.
        • Suzuki N.
        Current state and future possibilities of ovarian tissue transplantation.
        Reproductive Medicine and Biology. 2019; 18: 217-224https://doi.org/10.1002/rmb2.12268
        • Tavana S.
        • Azarnia M.
        • Valojerdi M.R.
        • Shahverdi A.
        Hyaluronic acid-based hydrogel scaffold without angiogenic growth factors enhances ovarian tissue function after autotransplantation in rats.
        Biomedical Materials (Bristol). 2016; : 11https://doi.org/10.1088/1748-6041/11/5/055006
        • Tohidnezhad M.
        • Wruck C.J.
        • Slowik A.
        • Kweider N.
        • Beckmann R.
        • Bayer A.
        • Houben A.
        • Brandenburg L.O.
        • Varoga D.
        • Sönmez T.T.
        • Stoffel M.
        • Jahr H.
        • Lippross S.
        • Pufe T.
        Role of platelet-released growth factors in detoxification of reactive oxygen species in osteoblasts.
        Bone. 2014; 65: 9-17https://doi.org/10.1016/j.bone.2014.04.029
        • Van Eyck A.S.
        • Jordan B.F.
        • Gallez B.
        • Heilier J.F.
        • Van Langendonckt A.
        • Donnez J.
        Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting.
        Fertility and Sterility. 2009; 92: 374-381https://doi.org/10.1016/j.fertnstert.2008.05.012
        • Wassarman P.M.
        Zona pellucida glycoproteins.
        Journal of Biological Chemistry. 2008; 283: 24285-24289https://doi.org/10.1074/jbc.R800027200
        • Wassarman P.M.
        • Litscher E.S.
        Zona pellucida genes and proteins: Essential players in mammalian oogenesis and fertility.
        Genes. 2021; : 12https://doi.org/10.3390/genes12081266
        • Watson C.J.
        • Collier P.
        • Tea I.
        • Neary R.
        • Watson J.A.
        • Robinson C.
        • Phelan D.
        • Ledwidge M.T.
        • Mcdonald K.M.
        • Mccann A.
        • Sharaf O.
        • Baugh J.A.
        Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype.
        Human Molecular Genetics. 2014; 23: 2176-2188https://doi.org/10.1093/hmg/ddt614
        • Widyaningrum R.
        • Burnouf T.
        • Nebie O.
        • Delila L.
        • Wang T.J.
        A purified human platelet pellet lysate rich in neurotrophic factors and antioxidants repairs and protects corneal endothelial cells from oxidative stress.
        Biomedicine and Pharmacotherapy. 2021; : 142https://doi.org/10.1016/j.biopha.2021.112046
        • Wu X.
        • Sun J.
        • Zhang X.
        • Li X.
        • Liu Z.
        • Yang Q.
        • Li L.
        Epigenetic Signature of Chronic Cerebral Hypoperfusion and Beneficial Effects of S-adenosylmethionine in Rats.
        Molecular Neurobiology. 2014; 50: 839-851https://doi.org/10.1007/s12035-014-8698-5
        • Yu X.X.
        • Liu Y.H.
        • Liu X.M.
        • Wang P.C.
        • Liu S.
        • Miao J.K.
        • Du Z.Q.
        • Yang C.X.
        Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes.
        Scientific Reports. 2018; 8: 1-12https://doi.org/10.1038/s41598-018-24395-y
        • Zhang Q.
        • Wang S.M.
        • Yao P.B.
        • Zhang L.
        • Zhang Y.J.
        • Chen R.X.
        • Fu Y.
        • Zhang J.M.
        Effects of l-carnitine on follicular survival and graft function following autotransplantation of cryopreserved-thawed ovarian tissues.
        Cryobiology. 2015; 71: 135-140https://doi.org/10.1016/j.cryobiol.2015.04.008
        • Zhao H.
        • Han Z.
        • Ji X.
        • Luo Y.
        Epigenetic regulation of oxidative stress in ischemic stroke.
        Aging and Disease. 2016; 7: 295-306https://doi.org/10.14336/AD.2015.1009
        • Zhao Y.
        • Ding C.
        • Xue W.
        • Ding X.
        • Zheng J.
        • Gao Y.
        • Xia X.
        • Li S.
        • Liu J.
        • Han F.
        • Zhu F.
        • Tian P.
        Genome-wide DNA methylation analysis in renal ischemia reperfusion injury.
        Gene. 2017; 610: 32-43https://doi.org/10.1016/j.gene.2017.02.005
        • Zhu C.
        • Xiang W.
        • Li B.
        • Wang Y.
        • Feng S.
        • Wang C.
        • Chen Y.
        • Xie W.
        • Qu L.
        • Huang H.
        • Annunziata F.
        • Nunna S.
        • Krepelova A.
        • Mohammad M.
        • Rasa S.
        • Neri F.
        • Chen J.
        • Jiang H.
        DNA methylation modulates allograft survival and acute rejection after renal transplantation by regulating the mTOR pathway.
        American Journal of Transplantation. 2021; 21: 567-581https://doi.org/10.1111/ajt.16183

      Biography

      Malek Soleimani Mehranjani obtained his PhD at Sheffield University, UK. He returned to Arak University in Iran and jointly founded the Reproductive Biology Centre there. He is currently Professor at Arak University, and his major areas of interest are histological, pathological and clinical evaluation of the reproductive system.
      Key message
      Platelet lysate as a substrate for ovarian tissue grafting site can contribute to follicular survival and graft function restoration through reducing follicle loss induced by ischaemia reperfusion and reducing DNA methylation of the oocyte maturation genes, which ultimately increases the expression of these genes and enhances folliculogenesis.